Volume 9, Issue 24 (3-2018)                   jcb 2018, 9(24): 22-29 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbanpour A, Salimi A, Tajick Ghanbary M A, Pirdashti H, Dehestani A. Relationship between Fruit Yield and its Components in Tomato (Lycopersicon esculentum Mill.) Cultivars using Multivariate Statistical Methods. jcb. 2018; 9 (24) :22-29
URL: http://jcb.sanru.ac.ir/article-1-928-en.html
Department of plant Biology, Faculty of Science, Kharazmi University
Abstract:   (1844 Views)
In order to investigate the relationship between different traits with yield, an experiment was conducted on 16 tomato genotypes in randomized complete blocks design, with three replications. Twenty agronomical traits including plant height, stem diameter, number of shoots, plant weight, number of branches, number and dry weight of leaves, stems and roots, number of fruits per plant, fruit weight, fruit length and width, length to width ratio and distance of fruit to the ground, chlorophyll content and yield were studied. Correlation analysis revealed that fruit yield was significantly and positively correlated with plant height, leaf number, chlorophyll content and fruit number. Plant height, leaf number and number of fruits had a positive and significant correlation with fruit yield. In order to remove the effect of the traits with little impact on fruit yield, stepwise regression analysis (correlation coefficient of 89 percent) was used. The results showed that the number of fruits per plant was the most important component. Also, the results of path analysis revealed that this traits (I= 0.94) exerted the highest positive direct effect and chlorophyll content (I= -0.059) showed a negative direct effect on fruit yield. According to the results of cophenetic correlation coefficient, tomato cultivars were clustered into two groups by UPGMA method. Also, results of cluster analysis were confirmed by Biplot. In conclusion, some morpho-physiological characteristics such as plant height, leaf number, chlorophyll content and fruit number are the most important criteria to selection of tomato hybrids with higher yield.
Full-Text [PDF 431 kb]   (892 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2018/03/10 | Revised: 2019/04/14 | Accepted: 2018/03/10 | Published: 2018/03/10

1. Ara, A., R. Narayan, N. Ahmed and S. Khan. 2009. Genetic variability and selection parameters for yield and quality attributes in tomato. Indian Journal of Horticulture, 66(1): 73-78.
2. Bai, Y. and P. Lindhout. 2007. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?. Annals of Botany, 100(5): 1085-1094. [DOI:10.1093/aob/mcm150]
3. Emami, A. and A.R. Eivazi. 2013. Evaluation of Genetic variations of tomato genotypes (Solanum lycopersicum L.) with multivariate analysis. International Journal of Scientific Research in Environmental Sciences, 1(10): 273-284. [DOI:10.12983/ijsres-2013-p273-284]
4. Evgenidis, G., E. Traka-Mavrona and M. Koutsika-Sotiriou. 2011. Principal component and cluster analysis as a tool in the assessment of tomato hybrids and cultivars. International Journal of Agronomy, 2011: 1-8 [DOI:10.1155/2011/697879]
5. Fraser, J. and G. Eaton. 1983. Applications of yield component analysis to crop research, Field Crop Abstracts, 787-797.
6. briel, K.R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3): 453-467. [DOI:10.1093/biomet/58.3.453]
7. Gonçalves, L.S.A., R. Rodrigues, A.D. Amaral Júnior, M. Karasawa and C.P. Sudré. 2009. Heirloom tomato gene bank: assessing genetic divergence based on morphological, agronomic and molecular data using a Ward-modified location model. Genetics and Molecular Research, 8(1): 364-374. [DOI:10.4238/vol8-1gmr549]
8. Haydar, A., M. Mandal, M. Ahmed, M. Hannan, R. Karim, M. Razvy, U. Roy and M. Salahin, 2007. Studies on genetic variability and interrelationship among the different traits in tomato (Lycopersicon esculentum Mill.). Middle-East Journal of Scientific Research, 2(3): 139-142.
9. Henareh, M., A. Dursun and B.A. Mandoulakani. 2015. Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters. Acta Scientiarum Polonorum. Hortorum Cultus, 14(2): 87-96.
10. Hosseinzadeh Fashalami, N., Z. Shahadati Moghaddam, G. Kiani, M. Salavati, P. Zamani, A. Mahdavi and R. Alinejad. 2015. Investigation of genetic diversity among different oriental tobacco (nicotiana tabacum l.) varieties using multivariate methods. Journal of Crop Breeding, 7(15): 126-134.
11. Islam, B., N. Ivy, M. Rasul, M. Zakaria. 2010. Character association and path analysis of exotic tomato (Solanum lycopersicum L.) genotypes. Bangladesh Journal of Plant Breeding and Genetics, 23(1): 13-18. [DOI:10.3329/bjpbg.v23i1.9313]
12. Jobson, J.D. 1992. Applied Multivariate Data Analysis. Volum H, Categorical and Multivariate Methods. Springer-Verlag, New York, 23: 65-86. [DOI:10.1007/978-1-4612-0921-8]
13. J oshi, B.K., R.G. Gardner and D.R. Panthee. 2011. GGE Biplot Analysis of Tomato F1 Hybrids Evaluated Across Years for Marketable Fruit Yield. Journal of Crop Improvement, 25(5): 488-496. [DOI:10.1080/15427528.2011.587138]
14. Khodarahmpour, Z. and M. Motamedi. 2016. Study of Genetic Diversity of Alfalfa (Medicago sativa L.) Genotypes Via Multivariate Analysis. Journal of Crop Breeding, 8(19): 163-169.
15. Kumari, S. and M.K. Sharma. 2014. Genetic variability studies in tomato (Solanum lycopersicum L.). Vegetable Science, 40(1): 83-86.
16. Kumar, D., R. Kumar, S. Kumar, M.L. Bhardwaj, M.C. Thakur, R. Kumar, K.S. Thakur, B.S. Dogra, A. Vikram, A. Thakur and P. Kumar. 2013. Genetic variability, correlation and path coefficient analysis in tomato. International Journal of Vegetable Science, 19(4): 13-323. [DOI:10.1080/19315260.2012.726701]
17. Kumar, P., K. Singh, S.K. Jindal and D.S. Khurana. 2014. Association studies for processing traits in tomato (Solanum lycopersicum L.). Journal of Research, 51(3): 250-254.
18. Krasteva, L., I. Ivanova and N. Velcheva. 2010. Grouping of determinate local tomato varieties on the basis of cluster analysis. Agricultural Science and Technology, 2(3): 113-115.
19. Mahmood, T. 2008. Path coefficient analysis of yield component in tomato (Lycopersicon esculentum). Pakistan Journal of Botany, 40(2): 627-635. [DOI:10.3923/pjbs.1999.635.636]
20. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer research, 27(2): 209-220.
21. Martínez, D.E. and J.J. Guiamet. 2004. Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status. Agronomie, 24(1): 41-46. [DOI:10.1051/agro:2003060]
22. Mazzucato, A., R. Papa, E. Bitocchi, P. Mosconi, L. Nanni, V. Negri, M.E. Picarella, F. Siligato, G.P. Soressi, and B. Tiranti. 2008. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116(5): 657-669. [DOI:10.1007/s00122-007-0699-6]
23. Reddy, B.R., M.P. Reddy, Begum and N. Sunil. 2013. Genetic diversity studies in tomato (Solanum lycopersicum L.). Journal of Agriculture and Veterinary Science (IOSR-JAVS), 4: 53-55. [DOI:10.9790/2380-0445355]
24. Rohlf, F.J. 1998. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.02. Exeter Software: Setauket, NY
25. Rohlf, F.J. 2000. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software: Setauket, NY
26. Saburi, H., M. Nahvi, A. Torabi and M. Kanoni. 2008. Classification of rice varieties at different levels from the osmotic potential of sorbitol based on cluster analysis and fisher linear functions. Iranian Congress of Agronomy and Plant Breeding, 28-30 August, Karadj, Iran, Crop Science Societ, 7: 327-340.
27. Shokat, S., F.M. Azhar, Q. Iqbal, G. Nabi, M.M. Raza and M. Saleem. 2013. Heritability Studies of Fruit Related Traits in Solanum Lycopersicum L. Germplasm. Journal of Biology and Life Science, 4(2): 56-62. [DOI:10.5296/jbls.v4i2.2402]
28. Sneath, P.H. and R.R. Sokal. 1973. Numerical taxonomy. The principles and practice of numerical classification. Freeman and company Sanfrancisco, 573 pp.
29. Srivastava, K., K. Kumari, S. Singh and R. Kumar. 2013. Association studies for yield and its component traits in tomato (Solanum Lycopersicum L.). Plant Archives, 13(1): 105-112.
30. Verma, S. and D. Sarnaik. 2000. Path analysis of yield components in tomato (Lycopersicon esculentum Mill). Journal of Applied Biology, 10(2): 136-138.
31. Yan, W. and I. Rajcan. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42(1): 11-20. [DOI:10.2135/cropsci2002.1100]
32. Yan, W. and N.A. Tinker. 2005. An integrated biplot analysis system for displaying, interpreting, and exploring genotype×environment interaction. Crop Science, 45(1): 1004-1016. [DOI:10.2135/cropsci2004.0076]
33. Zadoks, J.C., T.T. Chang and C.F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed Research, 14(6): 415-421. [DOI:10.1111/j.1365-3180.1974.tb01084.x]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb