Volume 10, Issue 28 (12-2018)                   jcb 2018, 10(28): 50-63 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

moghaddaszadeh M, Asghari Zakaria R, Hassanpanah D, zare N. (2018). Non-Parametric Stability Analysis of Tuber Yield in Potato (Solanum tuberosum L.) Genotypes. jcb. 10(28), 50-63. doi:10.29252/jcb.10.28.50
URL: http://jcb.sanru.ac.ir/article-1-830-en.html
University of Mohaghegh Ardabili, Ardabil
Abstract:   (3494 Views)
In order to study tuber yield stability of 15 potato genotypes, this research was carried out using randomized complete block design with three replications in three different research stations in Iran during two growing seasons. The combined analysis of variance indicated that the main effects of genotype (G), environment (E) and their interactions genotype and environmen (G×E) were highly significant (p < 0.01). The principal component analysis (PCA) based on rank correlation matrix indicated that the first two PCAs explained 86.7% of the variance of original variables. Based on bi-plot analysis, the stability parameters were classified into four groups. Clustering of the genotypes according to the mean yield and nonparametric stability statistics showed that there were two main clusters. Overall, according to mean rank of nonparametric stability parameters, G1, G15, G5, G6, G12 and G13 had the lowest variations and were recognized as the most stable genotypes. Genotypes G9, G11, G14, G3 and G7 had the highest values of mean rank of parameters and therefore, would be considered to be the most unstable. According to the present study, the stability measures Ysi, R, TOP and LOW were associated with mean yield (MY) and the dynamic concept of stability. Therefore, these procedures were suitable for selecting stable and high yielding genotypes. Based on these parameters, genotypes G5 (45.57 t/ha) and G1 (39.99 t/ha) were identified as high yield stable genotypes.
Full-Text [PDF 3259 kb]   (978 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2017/10/3 | Revised: 2019/03/4 | Accepted: 2018/01/13 | Published: 2019/03/2

References
1. Becker, H.C. 1981. Correlations among some statistical measures of phenotypic stability. Euphytica, 30: 835-840. [DOI:10.1007/BF00038812]
2. Becker, H.C. and J. Leon. 1988. Stability analysis in plant breeding. Plant Breeding, 101: 1-23. [DOI:10.1111/j.1439-0523.1988.tb00261.x]
3. Ebadi Segherloo, A., S.H. Sabaghpour, H. Dehghani and M. Kamrani. 2008. Non-parametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica, 162: 221-229. [DOI:10.1007/s10681-007-9552-x]
4. FAO. 2008. International year of the potato 2008. Available at www.potato2008.org (accessed 19 August, 2014). Food and Agriculture Organization, Rome.
5. Farshadfar, E., S.H. Sabaghpour and H. Zali. 2012. Comparison of parametric and non-parametric stability statistics for selecting stable chickpea (Cicer arietinum L.) genotypes under diverse environments. Australian Journal of Crop Science, 6: 514-524.
6. Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun and R. Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica, 47: 57-64. [DOI:10.1007/BF00040364]
7. Hassanpanah, D. and S.H. Azizi Chakherchaman. 2010. Estimating rank and stability analysis of potato cultivars by nonparametric stability analysis. Research Journal of Environmental Sciences, 4: 173-179. [DOI:10.3923/rjes.2010.173.179]
8. Hassanpanah, D. and H. Hassanabadi. 2011. Evaluation of quantitative and qualitative characteristics of promising potato clones in Ardabil region, Iran. Modern Science of Sustainable Agriculture Journal, 7: 37-48 (In Persian).
9. Hassanpanah, D. and H. Hassanabadi. 2012. Evaluation of quantitative, qualitative and tuber yield stability of 18 promising potato clones in Ardabil province. Journal of Crop Ecophysiology, 8: 219-234 (In Persian).
10. Huehn, M. 1979. Beitrage zur Erfassung der phänotypischen Stabilitä t. I. Vorschlag einiger auf Ranginformationen beruhenden Stabilitä tsparameter. EDV in Medizin ünd Biologie, 10: 112-117.
11. Huehn, M. 1990. Nonparametric measures of phenotypic stability. Part 1: Theory. Euphytica, 47: 189-194.
12. Huehn, M. 1996. Non-parametric analysis of genotype×environment interactions by ranks, In M.S. Kang and H.G. Gauch (ed.) Genotype by environment interaction. CRC Press, BocaRaton, FL, 213-228. [DOI:10.1201/9781420049374.ch9]
13. Kang, M.S. 1988. A rank-sum method for selecting highyielding, stable corn genotypes. Cereal Research Communications, 19: 361-364.
14. Kaya, Y. and M. Turkoz. 2016. Evaluation of genotype by environment interaction for grain yield in durum wheat using non-parametric stability statistics. Turkish Journal of Field Crops, 21: 51-59. [DOI:10.17557/tjfc.48198]
15. Ketata, H. 1988. Genotype environment interaction. Proceeding of biometrical technique for cereal breeders. ICARDA. Aleppo. Syria, 16-32.
16. Ketata, H., S.K.M. Yan and M. Nachit. 1989. Relative consistency performance across environments. Int. Symposium on Physiology and Breeding of Winter Cereals for stressed Mediterranean Environments. Montpellier, July, 3-6.
17. Khalili, M. and A. Pour-Aboughadareh. 2016. Parametric and non-parametric measures for evaluating yield stability and adaptability in barley doubled haploid lines. Journal of Agricultural Science and Technology, 18: 789-803.
18. Lachman, J., K. Hamouz, M. Orsak and V. Pivec. 2001. Potato glycoalkaloids and their significance in plant protection and nutrition. Rost Vyroba, 47: 181-1912.
19. Mohammadi R. and A. Amri. 2008. Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159:419-432. [DOI:10.1007/s10681-007-9600-6]
20. Mohammadi, R., A. Abdulahi, R. Haghparast and M. Armion. 2007. Interpreting genotype x environment interactions for durum wheat grain yields using non-parametric methods. Euphytica, 157:239-251. [DOI:10.1007/s10681-007-9417-3]
21. Mut, Z., A. Gülümser and A. Sirat. 2010. Comparison of stability statistics for yield in barley (Hordeum vulgare L.). African Journal of Biotechnology, 9: 1610-1618. [DOI:10.5897/AJB10.1404]
22. Nassar, R. and M. Huhn. 1987. Studies on estimation of phenotypicstability: Tests of significance for non-parametric measures of phenotypic stability. Biometrics, 43: 45-53. [DOI:10.2307/2531947]
23. Noruzi, E. and A. Ebadi. 2015. Comparison of parametric and non-parametric methods for analysing genotype× environment interactions in sunflower (Helianthus annuus L.) inbred lines. Jordan Journal of Agricultural Sciences, 11: 959-979.
24. Roostaei, M., R. Mohammadi and A. Amri. 2015. Rank correlation among different statistical models in ranking of winter wheat genotypes. The Crop Journal, 2: 154-163. [DOI:10.1016/j.cj.2014.02.002]
25. Sabaghnia, N., H. Dehghani and S.H. Sabaghpour. 2006. Nonparametric methods for interpreting genotype × environment interaction of lentil genotypes. Crop Science, 46: 1100-1106. [DOI:10.2135/cropsci2005.06-0122]
26. Safavi, S.M. and S. Bahraminejad. 2017. The evaluation of genotype × environment interactions for grain yield of oat genotypes using AMMI model. Journal of Crop Breeding, 922: 125-132 (In Persian).
27. Scapim, C.A., V.R. Oliveira, A.L. Braccini, C.D. Cruz, C.A.B. Andrade and C.G.M. Vidigal. 2000. Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Genetics and Molecular Biology, 23: 387-393. [DOI:10.1590/S1415-47572000000200025]
28. Secor, G.A. and N.C. Gudmestad. 1999. Managing fungal diseases of potato. Canadian Journal of Plant Pathology, 21: 213-221. [DOI:10.1080/07060669909501184]
29. Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components ofvariability. Heredity, 29: 237-242. [DOI:10.1038/hdy.1972.87]
30. Sohrabi, S.S., H. Dehghani and B. Alizadeh. 2016. Evaluation of seed yield stability of promising winter rapeseed (Brassica napus L.) lines using principal coordinates analysis. Journal of Crop Breeding, 8: 152-158 (In Persian).
31. Solomon, K.F., H.A. Smit, E. Malan and W.J. Du Toit. 2007. Comparison study using rank based nonparametric stability statistics of durum wheat. World Journal of Agricultural Sciences, 3:444-450.
32. Soughi, H.A., N.A. Babaeian Jelodar, G.A. Ranjbar and M.H. Pahlevani. 2016. Simultaneous selection based on yield and yield stability in bread wheat genotypes. Journal of Crop Breeding, 8:119-125 (In Persian). [DOI:10.29252/jcb.8.18.119]
33. Syukur, M., S. Sujiprihati, R. Yunianti and D.A. Kusumah. 2014. Non paramectric stability analysis for yield of hybrid chili pepper (Capsicum annuum L.) across six different environments. Journal Agronomi Indonesia, 42: 32-38.
34. Tadege, M.B., H.Z. Utta and A.A. Aga. 2014. Association of statistical methods used to explore genotype×environment interaction (GEI) and cultivar stability. African Journal of Agricultural Research, 9: 2231-2237. [DOI:10.5897/AJAR2013.8366]
35. Thennarasu, K. 1995. On certain non-parametric procedures for studying genotype environment interactions and yield stability. Ph.D. theses, P.J. School, IARI., New Delhi, 255 pp.
36. Truberg, B. and M. Huehn. 2000. Contribution to analysis of genotype by environment interactions: Comparison of different parametric and non-parametric tests for interactions with emphasis on crossover interactions. Agronomy Crop Science, 185: 267-274. [DOI:10.1046/j.1439-037x.2000.00437.x]
37. Yong-jian, L., D. Chuan, T. Meng-liang, H.U. Er-liang1 and H. Yu-bi. 2010. Yield stability of maize hybrids evaluated in maize regional trials in southwestern China using nonparametric methods. Agricultural Sciences in China, 9: 1413-1422. [DOI:10.1016/S1671-2927(09)60232-7]
38. Zali, H., E. Farshadfar and S.H. Sabaghpour. 2011. Non-parametric analysis of phenotypic Stability in chickpea (Cicer arietinum L.) genotypes in Iran. Crop Breeding Journal, 1: 89-100.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb