Volume 10, Issue 28 (12-2018)                   jcb 2018, 10(28): 73-82 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahmani Asl R, Bernousi I, Abdollahi Mandulakani B. (2018). Study of Genetic Structure and Diversity of Iranian Wheat Lines and Cultivars using SSR Markers. jcb. 10(28), 73-82. doi:10.29252/jcb.10.28.73
URL: http://jcb.sanru.ac.ir/article-1-678-en.html
Urmia University
Abstract:   (3174 Views)

Genetic improvement of crop plants such as wheat, relies on genetic diversity.  In the current investigation, the genetic diversity of 99 wheat lines and 49 cultivars were assessed using 20 SSR primers. Out of the primers used, 19 were polymorphic among studied lines and cultivars and a total of 67 alleles were amplified. The number of alleles per locus ranged from 1 (Xgwm44) to 7 (Xgwm47), with a mean value of 3.5. The mean of expected heterozygosity (He) ranged from 0.71 (Xgwm149) to 0.27 (Xgwm469). The mean of polymorphism information content (PIC) and the maximum value of Shannon’s information index (I) were 0.52 and 0.88 respectively. The number of alleles (Na), Shannon’s information index (I) and mean of expected heterozygosity (He), for lines were slightly more than those of cultivars. Average of gene differentiation coefficients (Fst) and gene flow (Nm) for all primers were 0.067 and 6.96 respectively. Analysis of molecular variance (AMOVA) revealed a higher level of genetic variation within lines + cultivars (89%) compared to among lines and cultivars (11%). Cluster analysis using UPGMA method and simple matching coefficients placed the lines and cultivars in five groups. Similarity coefficients ranged from 0.40 to 1 with a mean value of 0.70. Some cultivars with the same geographic origin were located in the same cluster. The high level of genetic similarity detected in cultivars may demonstrate the narrow genetic base of Iranian wheat germplasm. However, according to the genetic distance between different groups, lines in divergent groups could be potentially used as parents in wheat breeding programs.
 

Full-Text [PDF 1113 kb]   (846 Downloads)    
Type of Study: Research | Subject: بيوتكنولوژي گياهي
Received: 2016/12/25 | Revised: 2019/03/2 | Accepted: 2018/04/3 | Published: 2019/03/2

References
1. Abdollahi Mandoulakani, B., A.A. Shahnejat-Bushehri, B.E. Sayed Tabatabaei, S. Torabi and A. Mohammadi Hajiabad. 2010. Genetic diversity among wheat cultivars using molecular markers. Journal of Crop Improvement, 24: 299-309. [DOI:10.1080/15427528.2010.496668]
2. Ahmed, M. 2002. Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome, 45: 646-651. [DOI:10.1139/g02-028]
3. Akkaya, M.S. and E.B. Buykunal-Bal. 2004. Assessment of genetic variation of bread wheat varieties using microsatellite Euphytica, 135: 179-185. [DOI:10.1023/B:EUPH.0000014908.02499.41]
4. Archak, S., A.B. Gaikwad, D. Gautam, E.V. Rao, K.R. Swamy, and J.L. Karihaloo. 2003. Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome, 3: 362-369. [DOI:10.1139/g03-016]
5. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl, L.M. Albright D.M. Coen and A. Varki. 1995. Current protocols in molecular biology. Jon Wiley, New York, 4725 pp.
6. Bered, F., J.F. Barbosa-Neto and F.I.F. de Carvalho. 2002. Genetic variability in common wheat germplasm based on coefficients of parentage. Genetic Molecular Biology, 25: 211-215. [DOI:10.1590/S1415-47572002000200015]
7. Carvalho, A., H. Guedes-Pinto, P. Martin-Lopes and J. Lima-Brito. 2010. Genetic variability of old Portuguese bread wheat cultivar assayed by IRAP and REMAP markers. Annual Applied Biology, 156: 337- 345. [DOI:10.1111/j.1744-7348.2010.00390.x]
8. Dashchi, S., B. Abdollahi Mandoulakani, R. Darvishzadeh and I. Bernousi. 2013. Molecular similarity relationships among Iranian bread wheat cultivars and breeding lines using ISSR markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40: 254-260. [DOI:10.15835/nbha4027949]
9. Devos, K.M. and M.D. Gale. 1992. The use of random amplified polymorphism DNA markers in wheat. Theoretical and Applied Genetics, 84: 567-572. [DOI:10.1007/BF00224153]
10. Dreisigacker, S., P. Zhang, M.L. Warburton, B. Skovmand, D. Hoisington and A.E. Melchinger. 2005. Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Science, 45: 653-661. [DOI:10.2135/cropsci2005.0653]
11. Gorji, A.H. and M. Zolnoori. 2011. Genetic diversity in hexaploid wheat genotypes using microsatellite markers. Asian Journal of Biological Sciences, 3: 368-377. [DOI:10.3923/ajbkr.2011.368.377]
12. Habash, D.Z., Z. Kehel and M. Nachit. 2009. Genomic approaches for designing durum wheat ready for climate change with a focus on drought. Journal of Experimental Botany, 60: 2805-2815. [DOI:10.1093/jxb/erp211]
13. Huang, X.Q., A. Borner, M.S. Roder and M.W. Ganal. 2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theoretical and Applied Genetics, 105: 699-707. [DOI:10.1007/s00122-002-0959-4]
14. Jamalirad, S., A. Mohammadi, M. Khodarahmi and M. Toorchi. 2008. Assessing genetic relationships of bread wheat varieties based on allelic diversity of microsatellite markers. Modern Genetics Journal, 1: 79-89 (In Persian).
15. Khalighi, M., A. Arzani and M.M. Poursiahbidi. 2008. Assessment of genetic diversity in Triticum spp. and Aegilops spp. Using AFLP markers. African Journal of Biotechnology, 7: 546-552.
16. Ma, Z.Q., M.S. Roder and M.E. Sorrells. 1996. Frequencies and sequence characteristics of di-, tri-, and tetra nucleotide microsatellites in wheat. Genome, 39: 123-130. [DOI:10.1139/g96-017]
17. Mir, R.R., J. Kumar, H.S. Balyan and P.K. Gupta. 2012. A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last100 years. Genetic Resource Crop Evolution, 59: 717-726. [DOI:10.1007/s10722-011-9713-6]
18. Mohammadi, S.A., M. Khodarahmi, S. Jamalirad and M.R. Jalal Kamali. 2009. Genetic diversity in a collection of old and new bread wheat cultivars from Iran as revealed by simple sequence repeat-based analysis. Annual Applied Biology, 154: 67-76. [DOI:10.1111/j.1744-7348.2008.00273.x]
19. Mollaheydari Bafghi, R., A. Baghizadeh, G.H. Mohammadi-Nejad and B. Nakhoda. 2014. Assessment of genetic diversity in Iranian wheat (Triticum aestivum L.) cultivars and lines using microsatellite markers. Journal of Plant Molecular Breeding 2(1): 74-89.
20. Nasri, Sh., B. Abdollahi Mandoulakani, R. Darvishzadeh and I Bernousi. 2013. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers. Biochemical Genetics, 51: 927-943. [DOI:10.1007/s10528-013-9618-5]
21. Pahlavani, S., A. Izanloo, S. Parsa and M.G. Ghaderi. 2016. Association between grain quality traits and SSR molecular markers in some bread wheat genotypes. Journal of Crop Breeding, 8(19): 25-36 (In Persian).
22. Roder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy and M.W. Ganal. 1998. A microsatellite map of wheat. Journal Genetics Society of America, 149: 2007-2023.
23. Roussel, V., J. Koenig, M. Beckert and F. Balfourier. 2004. Molecular diversity in French bread wheat accessions related to temporal trends and breeding programs. Theoretical and Applied Genetics, 108: 920-930. [DOI:10.1007/s00122-003-1502-y]
24. Saghai-Maroof M.A., R.M. Biyashev, G.P. Yang, Q.F. Zhang and A.W. Allard. 1994. Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 91:5466-5470. [DOI:10.1073/pnas.91.12.5466]
25. Saker, M., M. Nagchtigall and T.A. Kuehne. 2005. Comparative assessment of DNA fingerprinting by RAPD, SSR and AFLP in genetic analysis of some barley genotypes. Egyptian Journal of Genetics and Cytology, 34: 81-97.
26. Sardouie-Nasab, S., G.h. Mohammadi-Nejad and B. Nakhoda. 2013. Assessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance. Journal of Plant Molecular Breeding, 2: 28-39.
27. Schuster, I., E.S.N. Vieira, G.J. da Silva, F.A. Franco and V.S. Marchioro. 2009. Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers. Genetic Molecular Biology, 32: 557-563. [DOI:10.1590/S1415-47572009005000045]
28. SenturkAkfirat, F. and A. AltinkutUncuoglu. 2013. Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR markers. Biochemical Genetics, 51: 223-229. [DOI:10.1007/s10528-012-9557-6]
29. Talbert, L.E., N.K. Blake, P.W. Chee, T.K. Blake and G.M. Magyar. 1994. Evaluation of sequence-tagged-site-facilitated PCR products as molecular markers in wheat. Theoretical and Applied Genetics, 87: 789-794. [DOI:10.1007/BF00221130]
30. Zergani, M., G. Ranjbar and S. Ebrahimnezhad. 2015. Molecular assessment of genetic diversity among bread wheat (Triticum aestivum L.) doubled haploid lines using SSR markers. Journal of Crop Breeding, 7(15): 88-95 (In Persian).
31. Zhangh, D. and M.H. Godfry. 2003. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology, 12: 563-584. [DOI:10.1046/j.1365-294X.2003.01773.x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb