Volume 10, Issue 25 (6-2018)                   jcb 2018, 10(25): 110-117 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimi A, Rashidi Monfared S, moradi sarabshelli A, heidari P. (2018). Validation of some of Housekeeping Genes in Aeluropus littoralis under Salinity Stress. jcb. 10(25), 110-117. doi:10.29252/jcb.10.25.110
URL: http://jcb.sanru.ac.ir/article-1-627-en.html
Shahrood University of Technology
Abstract:   (3288 Views)
     Application of wild type crops or wild relatives’ cultivars that are halophyte in plant breeding program would provide better results in order to develop cultivars that are resistant toward drought as well as salinity. Recently, Aeluropus littoralis has attracted the attention of researcher in order to identify novel genes and their regulatory elements that are involved in salinity stress. Currently, Quantitative polymerase chain reaction (Q-PCR) is one of the best and sensitive techniques in order to determine the expression profiling of genes in plants. In this method, normalizations of the obtained data with appropriate housekeeping genes are certainly crucial. In the current research, the efficiency of seven reference genes to be employed in the normalization of the data was investigated. Statistical analysis of the data was done via geNorm program and it was demonstrated that the ACT11, Beta Actin and Beta tubulin and Beta tubulin and Beta Actin were constitutively expressed in leaf as well as roots, respectively. Based on the gained results through Best Keeper, the ACT11 poses the highest correlations with the BestKeeper (0.836 and 0.722 in leaf and root respectively). Additionally, it was shown that the Beta tubulin has the lowest coefficient variation in term of expression in root and leaf. Taken together, it was evidently demonstrated that the ACT11, Beta Actin and Beta tubulin are the best reference gene to be employed for the normalization of expression data in the Aeluropus littoralis.
 
Full-Text [PDF 491 kb]   (940 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/11/2 | Revised: 2018/07/7 | Accepted: 2017/02/19 | Published: 2018/07/8

References
1. Andersen, C.L., J.L. Jensen and T.F. Rntoft. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64: 5245-50. [DOI:10.1158/0008-5472.CAN-04-0496]
2. Ben-Saad, R., W. Ben-Ramdhan, N. Zouari, J. Azaza, D. Mieulet and E. Guiderdoni. 2012. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Molecular Breeding, 30: 521-33. [DOI:10.1007/s11032-011-9641-3]
3. Bevitori, R., M.B. Oliveira, M.F. Grossi-de-Sá, A.C. Lanna, R.D. da Silveira and S. Petrofeza. 2014. Selection of optimized candidate reference genes for qRT-PCR normalization in rice (Oryza sativa L.) during Magnaporthe oryzae infection and drought. Genetics and Molecular Research, 13: 9795-9805. [DOI:10.4238/2014.November.27.7]
4. Bustin, S.A. 2000. Absolute quantification of mRNA using Real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25: 169-93. [DOI:10.1677/jme.0.0250169]
5. Bustin, S.A. 2002. Quantification of mRNA using real-time reverse transcription PCR RT-PCR: trends and problems. Journal of Molecular Endocrinology, 29: 23-29. [DOI:10.1677/jme.0.0290023]
6. Cao, J., L. Wang and H. Lan. 2016. Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy. PeerJ, 4: 16-97. [DOI:10.7717/peerj.1697]
7. Ebrahimi, A., R. Maali-Amiri, Gh.A. Nematzadeh and H. Alizadeh. 2014. Bioinformatical analysis of Isolated ESTs from Aeluropus littoralis under salinity stress. Genetics engineering and Biosafety Journal, 3: 31-40 (In Persian).
8. Fedoroff, N.V., D.S. Battisti, R.N. Beachy, P.J.M. Cooper, D.A. Fischhoff, C.N. Hodges, V.C. Knauf, D. Lobell, B.J. Mazur, D. Molden, M.P. Reynolds, P.C. Ronald, M.W. Rosegrant, P.A. Sanchez, A. Vonshak and J.K. Zhu. 2010. Radically rethinking agriculture for the 21st century, Science, 327: 833-834. [DOI:10.1126/science.1186834]
9. Flowers, T.J. 2004. Improving crop salt tolerance. Journal of Experimental Botany, 55: 307-319. [DOI:10.1093/jxb/erh003]
10. Flowers, T.J. and T.D. Colmer. 2008. Salinity tolerance in halophytes. New Philologist, 179: 945-963. [DOI:10.1111/j.1469-8137.2008.02531.x]
11. Gal, A.B., J.W. Carnwath, A. Dinnyes, D. Herrmann, H. Niemann and C. Wrenzycki. 2006. Comparison of real-time polymerase chain reaction and end-point polymerase chain reaction for the analysis of gene expression in pre-implantation embryos. Reproduction, Fertility and Development, 18: 365-371. [DOI:10.1071/RD05012]
12. Gulzar, S., M.A. Khan and I.A. Ungar. 2003. Salt tolerance of a coastal salt marsh grass. Communications in Soil science and Plant analysis, 34: 2595-2605. [DOI:10.1081/CSS-120024787]
13. Gutierrez, L., M. Mauriat, J. Pelloux, C. Bellini and O. Van Wuytswinkel. 2008. towards a systematic validation of references in real-time RT-PCR. The Plant Cell, 20: 17-34. [DOI:10.1105/tpc.108.059774]
14. Hashemi, S.H.R., G.A. Nematzadeh, G.R. Ahmadian, A. Yamchi and M. Kuhlmann. 2016. Identification and validation of Aeluropus litoralis reference genes for Quantitative Real-Time PCR Normalization. Journal of Biological Research-Thessaloniki, 23: 18 pp. [DOI:10.1186/s40709-016-0053-8]
15. Jain, M., A. Nijhawan, A.K. Tyagi and J.P. Khurana. 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345: 646-651. [DOI:10.1016/j.bbrc.2006.04.140]
16. Jain, M., N. Kaur, R. Garg, J.K. Thakur, A.K. Tyagi and J.P. Khurana. 2006. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Functional and Integrative Genomics, 6: 47-59. [DOI:10.1007/s10142-005-0005-0]
17. Jarošová, J. and K.K. Jiban. 2010. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BioMed Central Plant Biology, 10: 146. [DOI:10.1186/1471-2229-10-146]
18. Jian, B., B. Liu, Y. Bi, W. Hou, C. Wu and T. Han. 2008. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BioMed Central Molecular Biology, 9: 59 pp. [DOI:10.1186/1471-2199-9-59]
19. Kamrava, S., B.J. Nadali and B. Nadali. 2016. Evaluation of Some Soybean Genotypes (Glycine max) under Salt Stress. Journal of Crop Breeding, 8: 57-63. [DOI:10.29252/jcb.8.18.57]
20. Karge, W.H., E.J. Schaefer and J.M. Ordovas. 1998. Quantification of mRNA by polymerase chain reaction (PCR) using an in‌ternal standard and a nonradioactive detection method. Methods in Molecular Biology, 110: 43-61. [DOI:10.1385/1-59259-582-0:43]
21. Kaya, C., H. Kirnak, D. Higgs and K. Saltali. 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae, 93: 65-74. [DOI:10.1016/S0304-4238(01)00313-2]
22. Modarresi, M., G.A. Nematzadeh and F. Moradian. 2011. Enzyme Assay of Aeluropus littoralis Regarding to the Salt (NaCl) Stresses, 5: 17-29.
23. Munns, R. 1993. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant, Cell Environment, 16: 15-24. [DOI:10.1111/j.1365-3040.1993.tb00840.x]
24. Narsai, R., A. Ivanova, S. Ng and J. Whelan. 2010. Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BioMed Central Plant Biology, 10: 56. [DOI:10.1186/1471-2229-10-56]
25. Pfaffl, M.W., A. Tichopad, C. Prgomet and T.P. Neuvians. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology Letters, 26: 509-515. [DOI:10.1023/B:BILE.0000019559.84305.47]
26. Podevin, N., A. Krauss, I. Henry, R. Swennen and S. Remy. 2012. Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-nodel crop Musa. Molecular Breeding, 30: 1237-1252. [DOI:10.1007/s11032-012-9711-1]
27. Saad, R.B., W.B. Romdhan., N. Zouari, J. Azaza, D. Mieulet, J.L. Verdeil, E. Guiderdoni and A. Hassairi. 2011. Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic Research, 20: 10-18. [DOI:10.1007/s11248-010-9474-6]
28. Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 31 pp.
29. Wang, Z.L., L. Ping-hua, F. Mark, G. Zhi-zhong, C.S. Kim, Z. Changquing, B. Hans, Z. Jian-kang, B. Ray, H. Paul, Z. Yan-xiu and Z. Hui. 2004. Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science, 166: 609-616. [DOI:10.1016/j.plantsci.2003.10.030]
30. Zouari, N., R. Ben Saad, T. Legavre, J. Azaza, X. Sabau, M. Jaoua, K. Masmoudi and A. Hassairi. 2007. Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene, 404: 61-69. [DOI:10.1016/j.gene.2007.08.021]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb