دوره 15، شماره 45 - ( بهار 1402 )                   جلد 15 شماره 45 صفحات 204-194 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ashrafzadeh N, Abdollahi Mandoulakani B. (2023). The Effect of Iron Deficiency on the Relative Expression of Genes Encoding Transcription Factors bZIP56, WRKY1 and NAM-B1 in Bread Wheat (Triticum aestivum L.). J Crop Breed. 15(45), 194-204. doi:10.61186/jcb.15.45.194
URL: http://jcb.sanru.ac.ir/article-1-1382-fa.html
اشرف زاده نسیم، عبدالهی مندولکانی بابک. تاثیر کمبود آهن بر بیان ژن‌های کد‌کننده‌ فاکتور‌های رونویسی WRKY1، bZIP56 و NAM-B1 در گندم نان (Triticum aestivum L.) پژوهشنامه اصلاح گیاهان زراعی 1402; 15 (45) :204-194 10.61186/jcb.15.45.194

URL: http://jcb.sanru.ac.ir/article-1-1382-fa.html


1- بیوتکنولوژی کشاورزی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه
2- گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه
چکیده:   (2103 مشاهده)
چکیده مبسوط
مقدمه و هدف: گندم نان (Triticum aestivum L.) یکی از مهم‌ترین محصولات تغذیه‌ای در سراسر جهان می‌باشد. گندم نیز مانند سایر گیاهان زراعی در طول دوره رشد با محدودیت‌های محیطی زیادی مواجه است که از جمله این محدودیت‌ها می‌توان به کمبود آهن در خاک اشاره کرد. آهن یکی از عناصر کم ‌مصرف‌ ضروری در گیاهان است که به‌عنوان  کوفاکتور کاتالیزوری در چندین فرایند کلیدی از جمله فتوسنتز و تنفس نقش دارد.
مواد و روش‌ها: به‌منظور مطالعه الگوی بیان ژن‌های کد کننده‌ فاکتور‌های ‌رونویسی WRKY1، bZIP56 و NAM-B1 تحت شرایط کمبود آهن در گندم نان، آزمایشی بصورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار در گلخانه اجرا شد. ارقام پیشتاز ( آهن-کارا) و فلات (آهن-ناکارا) گندم ‌نان در شرایط کمبود و کفایت آهن (به­ ترتیب کمتر از 1/5 و پنج میلی‌گرم آهن در کیلوگرم خاک) کشت و نمونه‌ برداری از برگ و ریشه گیاهان در دو مرحله رویشی (یک ماه پس از جوانه­زنی) و زایشی (30 درصد سنبله­دهی) انجام گرفت. بیان نسبی ژن‌های کد کننده فاکتورهای رونویسی مذکور تحت شرایط کمبود آهن نسبت به شرایط کفایت آن با استفاده از روش Real time PCR اندازه­گیری شد.
یافته ­ها: بر اساس نتایج حاصل از تحقیق، بیان ‌نسبی ژن کد کننده عامل رونویسی WRKY1 در ریشه هر دو رقم آهن-کارا (پیشتاز) و آهن-ناکارا (فلات) در مرحله رویشی به میزان قابل توجهی افزایش یافت. بیشترین میزان افزایش بیان نسبی ژن­های کد کننده عوامل رونویسی bZIP56 و NAM-B1 به ترتیب در برگ و ریشه رقم آهن-کارا پیشتاز در مراحل ‌رویشی و زایشی مشاهده شد. همچنین میزان بیان ژن bZIP56 در ریشه رقم آهن-ناکارا در هر دو مرحله رشدی بطور قابل توجهی افزایش یافت.
نتیجه­ گیری: با توجه به افزایش بیان نسبی ژن WRKY1 در برگ و ریشه هر دو رقم در مرحله رویشی، احتمالا این ژن در فعال­سازی و القای بیان ژن‌های دخیل در جذب و انتقال آهن در اوایل مراحل رشدی گندم نان مشارکت دارد. همچنین افزایش بیان نسبی ژن bZIP56 در ریشه هر دو رقم در مرحله زایشی نشان می­دهد احتمالا این ژن در فعال­سازی رونوشت برداری ژن‌های دخیل در جذب آهن از خاک در انتهای مراحل رشدی گیاه (مرحله پر شدن دانه) دخالت دارد.



 
متن کامل [PDF 1579 kb]   (665 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: 1401/3/2 | پذیرش: 1401/6/9

فهرست منابع
1. Abe, M., Y. Kobayashi, S. Yamamoto, Y. Daimon, A. Yamaguchi, Y. Ikeda and T. Araki. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309(5737): 1052-1056.‌ [DOI:10.1126/science.1115983]
2. Academic Center for Education, Culture and Research. 2018. Agricultural Statistics.
3. Alves, M.S., S.P. Dadalto, A.B. Gonçalves, G.B. De Souza, V.A. Barros and L.G. Fietto. 2013. Plant bZIP transcription factors responsive to pathogens: a review. International Journal of Molecular Sciences, 14(4): 7815-7828. [DOI:10.3390/ijms14047815]
4. Arab, K., R. Ravash and B. Shiran. 2020. Evaluation of MYB93 and MAD8 genes in transgenic and [DOI:10.29252/pgr.6.2.33]
5. non-transgenic rice. Plant Genetic Researches, 6(2): 33-42. ‌
6. Ayini, M., G. Khodakaramian, H. Mirzayi and A. Esmailzadeh. 2014. Biological and abiotic stresses in plants. National Conference on Climate Change and Sustainable Development Engineering of Agriculture and Natural Resources, COI: CCASD-027
7. Blasco, B., E. Navarro-León and J.M. Ruiz. 2018. Oxidative stress in relation with micronutrient deficiency or toxicity. In Plant Micronutrient Use Efficiency (pp. 181-194). Academic Press. ‌ [DOI:10.1016/B978-0-12-812104-7.00011-3]
8. Bouain, N., S.B. Satbhai, A. Korte, C. Saenchai, G. Desbrosses, P. Berthomieu and H. Rouached. 2018. Natural allelic variation of the AZI1 gene controls root growth under zinc-limiting condition. Public Library of Science genetics, 14(4): e1007304. [DOI:10.1371/journal.pgen.1007304]
9. Chen, X.Y., G.Q. Song, S.J. Zhang, Y.L. LI, G.A.O. Jie, I. Shahidul and W.Q. JI. 2017. The allelic
10. distribution and variation analysis of the NAM-B1 gene in Chinese wheat cultivars. Journal of Integrative Agriculture, 16(6): 1294-1303.‌ [DOI:10.1016/S2095-3119(16)61459-4]
11. Cole, C.R., F.K. Grant, E.D. Swaby-Ellis, J.L. Smith, A. Jacques, C.A. Northrop-Clewes and T.R. Ziegler. 2010. Zinc and iron deficiency and their interrelations in low-income African American and Hispanic children in Atlanta. The American Journal of Clinical Nutrition, 91(4): 1027-1034.‌ [DOI:10.3945/ajcn.2009.28089]
12. Du, L. and Z. Chen. 2000. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen-and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. The Plant Journal, 24(6): 837-847.‌ [DOI:10.1046/j.1365-313x.2000.00923.x]
13. Ekhtiari, M. and B. Abdollahi Mandoulakani. 2020. The effect of zinc deficiency stress on the expression pattern of genes encoding transcription factors bZIP4, bZIP79 and bZIP97 in bread wheat cultivars (Triticum aestivum L.). Iranian Journal of Crop Sciences, 21(4): 344-353 (In Persian). [DOI:10.29252/abj.21.4.344]
14. Eulgem, T. and I.E. Somssich. 2007. Networks of WRKY transcription factors in defense [DOI:10.1016/j.pbi.2007.04.020]
15. signaling. Current Opinion in Plant Biology, 10(4): 366-371.‌
16. Fukazawakavitha, P., S. Kuruvilla and M. Mathew. 2015. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiology and Biochemistry, 97: 165-174. [DOI:10.1016/j.plaphy.2015.10.005]
17. Hernandez, Y. and N. Sanan-Mishra. 2017. miRNA mediated regulation of NAC transcription factors in plant development and environment stress response. Plant Gene, 11: 190-198. [DOI:10.1016/j.plgene.2017.05.013]
18. Ivanov, R., T. Brumbarova and P. Bauer. 2012. Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Molecular Plant, 5(1): 27-42.‌ [DOI:10.1093/mp/ssr065]
19. Kalhor, S. 2016. Investigating the short-term and long-term relationship between CO2 emissions and food security in Iran. Master's thesis, Faculty of Agriculture. Urmia University.
20. Kaminaka, H., C. Näke, P. Epple, J. Dittgen, K. Schütze, C. Chaban and J. Dangl. 2006. bZIP10‐LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. The EMBO Journal, 25(18): 4400-4411.‌ [DOI:10.1038/sj.emboj.7601312]
21. Kasirajan, L., K. Boomiraj and K. Bansal. 2013. Optimization of genetic transformation protocol mediated by biolistic method in some elite genotypes of wheat (Triticum aestivum L.). African Journal of
22. Biotechnology, 12(6).‌
23. Kavitha, P., S. Kuruvilla and M. Mathew. 2015. Functional characterization of a transition metal ion
24. transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiology and Biochemistry, 97: 165-174.
25. Khalili Mahalleh, J. and M. Roshdi. 2008. Effect of foliar application of micro nutrients on quantitative and qualitative characteristics of 704 silage corn in Khoy. Seed and Plant Improvement Journal, 24(2): 281- 293.
26. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time
27. quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402-408
28. López-Berges, M.S., M.T. Scheven, P. Hortschansky, M. Misslinger, C. Baldin, F. Gsaller and H. Haas. 2021. The bZIP transcription factor HapX Is post-translationally regulated to control iron homeostasis in Aspergillus fumigatus. International Journal of Molecular Sciences, 22(14): 7739.‌ [DOI:10.3390/ijms22147739]
29. Malakouti, M.J. 2007. Zinc is a neglected element in the life cycle of plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology, 1(1): 1-12.
30. Menkir, A. 2008. Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chemistry, 110(2): 454-464. [DOI:10.1016/j.foodchem.2008.02.025]
31. Mirzamasoumzadeh, B. and V. Mollasadeghi. 2013. Effects of osmotic stress on chlorophyll and proline in different wheat Cultivars. UCT Journal of Research in Science Engineering and Technology, 1(1): 12-13.
32. Nakashima, K., H. Takasaki, J. Mizoi, K. Shinozaki and K. Yamaguchi-Shinozaki. 2012. NAC
33. transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819(2): 97-103.‌‌ [DOI:10.1016/j.bbagrm.2011.10.005]
34. Nijhawan, A., M. Jain, A.K. Tyagi and J.P. Khurana. 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology, 146(2): 333-350. [DOI:10.1104/pp.107.112821]
35. Parveen, S., R.K. Ranjan, A. Anand and B. Singh. 2018. Combined deficiency of nitrogen and iron
36. increases senescence induced remobilization of plant immobile iron in wheat. Acta Physiologiae
37. Plantarum, 40(12): 1-12.‌
38. Patil, B., R.M. Hosamani, P. Ajjappalavara, B. Naik, R. Smitha and K. Ukkund. 2008. Effect of foliar
39. application of micronutrients on growth and yield components of tomato (Lycopersicon esculentum Mill.). Karnataka Journal of Agricultural Sciences, 21(3): 428-430.
40. Pinto, A.P., A.D. Mota, A. De Varennes and F. Pinto. 2004. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Environment, 326(1-3): 239-247.‌ [DOI:10.1016/j.scitotenv.2004.01.004]
41. Rahaie, M., M. Gomarian, H. Alizadeh, M.A. Malboobi and M.R. Naghavi. 2011. The expression analysis of transcription factors under long term salt stress in tolerant and susceptible wheat genotypes using reverse northern blot technique. Iranian Journal of Crop Sciences, 13(3): 580-595 (In Persian).
42. Rahemi, S., R. Khorassani and A. Halajnia. 2014. Uptake efficiency of Iron in different wheat varieties. Journal of Water and Soil, 28 (3): 556-564.
43. Riechmann, J.L., J. Heard, G. Martin, L. Reuber, C.Z. Jiang, J. Keddie and G.Yu. 2000. Arabidopsis
44. transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290(5499):
45. Ruiz, J., M. Baghour and L. Romero. 2000. Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. Journal of Plant Nutrition, 23(11-12): [DOI:10.1080/01904160009382141]
46. ‌
47. Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition, 13(4): 905-927. [DOI:10.4067/S0718-95162013005000072]
48. Shen, H., Y. Yin, F. Chen, Y. Xu and R. Dixon. 2009. A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenergy Research. 2(4): 217-232. [DOI:10.1007/s12155-009-9047-9]
49. Sreenivasulua, N., S. Sopory and P. B. KaviKishor. 2007. Deciphering the regulatory mechanisms of
50. abiotic stress tolerance in plants by genomic approaches, Gene 388: 1-13.
51. TeymouriRad, L. and B. Abdollahi. 2022. Expression pattern of genes encoding bZIP56, WRKY1 and NAM-B1 transcription factors under Zn deficiency conditions in bread wheat (Triticum aestivum L.). [DOI:10.52547/jcb.14.42.106]
52. Journal of Crop Breeding (accepted) (In Persian).
53. Tuteja, N. and S.S. Gill. 2013. Crop improvement under adverse conditions. Springer: 4614-4633. [DOI:10.1007/978-1-4614-4633-0]
54. Uauy, C., A. Distelfeld, T. Fahima, A. Blechl and J. Dubcovsky. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314(5803): 1298-1301. [DOI:10.1126/science.1133649]
55. Ulm, R., A. Baumann, A. Oravecz, Z. Mate and E. Adam. 2004. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 101: 1397-1402. [DOI:10.1073/pnas.0308044100]
56. Wehbi E. and B. Abdollahi Mandoulakani. 2020. Expression Pattern of NAS1, NAS2 and NAS3 Genes under Zn Deficiency Conditions in Bread Wheat (Triticum aestivum L.). Journal of Crop Breeding, 12(36): 171-179(In Persian). [DOI:10.52547/jcb.12.36.171]
57. Waters, B.M., C. Uauy, J. Dubcovsky and M.A. Grusak. 2009. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 60(15): 4263-4274.‌ [DOI:10.1093/jxb/erp257]
58. Yan, J.Y., C.X. Li, L. Sun, J.Y. Ren, G.X. Li, Z.J. Ding and S.J. Zheng. 2016. A WRKY transcription factor regulates Fe translocation under Fe deficiency. Plant Physiology, 171(3): 2017-2027.‌ [DOI:10.1104/pp.16.00252]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb