Volume 11, Issue 29 (3-2019)                   J Crop Breed 2019, 11(29): 193-201 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hosseini M S, samsampour D, ebrahimi M, khanahmadi M. (2019). Study of Physiological and Biochemical Changes of Iraninan Licorice (Glycyrrhiza Glabra) under Salinity Stress in Filed Condition. J Crop Breed. 11(29), 193-201. doi:10.29252/jcb.11.29.193
URL: http://jcb.sanru.ac.ir/article-1-975-en.html
Institute for Agriculture Biotechnology Research - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
Abstract:   (3577 Views)
Licorice is a medicinal and aromatic plant that is taken into consideration for its valuable compounds such as glycyrrhizin. Salinity is a major environmental stress that affects the crops productivity. In the present study, the effect of salinity stress (using  irrigation treatment with different salt concentrations; 0, 150 and 300 mM) on fresh weight of root and total plant, concentration of pigments, total antioxidant, phenol content, ascorbate peroxide enzyme activity and glycyrrhizin content was investigated. The experiment was performed as a factorial under complete randomized block design with three replications in field assay in Agricultural Biotechnology Research Institute of Iran-Isfahan. This experiments showed that, the irrigation treatmentswith150 and 300 mM resulted in increased necrotic leaves, phenol and glycyrrhizin in licorice, i.e. the plants increased their phenolics and glycyrrhizin content, as a part of the mechanism to resist under stress. Increasing the activity of ascorbate peroxide enzyme in plants exposed to salinity stress, indicating the activation of antioxidative and protective systems, and reduction of oxidative damage in these plants. In salinity tolerant genotypes such as Ilam growth parameters, photosynthetic pigments and glycyrrhizin content were higher than sensitive genotypes. The present study has shown that introduction of tolerant genotypes in filed condition can reduce successfully the adverse effects of salinity stress. Therefore, the results of this research can be useful for cultivation of licorice in saline fields and breeding the tolerant genotypes.
Full-Text [PDF 1168 kb]   (1349 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/06/3 | Revised: 2019/05/14 | Accepted: 2018/09/24 | Published: 2019/05/8

References
1. Abedi, T. and H. Pakniyat. 2010. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.), Czech Journal of Genetics and Plant Breeding, 46: 27-34. [DOI:10.17221/67/2009-CJGPB]
2. Ahmadi-Hosseini, S.M., M.H. Souri, N. Farhadi, M. Moghadam and R. Omidbahgi. 2014. Changes in glycyrrhizin content of Iranian licorice (Glycyrrhiza glabra L.) affected by different root diameter and ecological conditions. Agriculture Community, 2: 27-33.
3. Aliu, S., I. Rusinovci, S. Fetahu, B. Gashi, E. Simeonovska and L. Rozman. 2015. The effect of salt stress on the germination of maize (Zea mays L.) seeds and photosynthetic pigments. Acta agriculturae Slovenica, 105: 85-94. [DOI:10.14720/aas.2015.105.1.09]
4. Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advance, 27: 84-93. [DOI:10.1016/j.biotechadv.2008.09.003]
5. Becana, M., J. Moran and I. Iturbe-Ormaetxe. 1998. Iron dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant and Soil, 201: 137-147. [DOI:10.1023/A:1004375732137]
6. Boscaiu, M., M. Sanchez, I. Bautista, P. Donat, A. Lidon, J. Llinares, C. Llul, O. Mayoral and O. Vicente. 2010. Phenolic compounds as stress markers in plants from gypsum habitats. Bulletin UASVM Horticulture, 67: 44-49.
7. Bradford, M.N. 1976. A rapid and sensitive method for the quantiation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. [DOI:10.1006/abio.1976.9999]
8. Brand-Williams, W., M.E. Cuvelier and C. Berset. 1995. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensmittel-Wissenschaft und -Technologie, 28: 25-30. [DOI:10.1016/S0023-6438(95)80008-5]
9. El Sayed, H.E.S.A. 2011. Influence of salinity stress on growth parameters, photosynthetic activity and cytological studies of Zea mays, L. plant using hydrogel polymer. Agriculture Biological Journal, 2: 907-920. [DOI:10.5251/abjna.2011.2.6.907.920]
10. Gaber, M.A. 2010. Antioxidative defense under salt stress. Plant Signaling & Behavior, 5: 369-374. [DOI:10.4161/psb.5.4.10873]
11. Grieve, C.M. and S.R. Grattan. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70: 303-307. [DOI:10.1007/BF02374789]
12. Harold, A. 1979. Glycyrrhizin-free fractions licorice root and process for obtaining such fraction. U.S.A, 4163067.
13. Hojati, M., S.A.M. Modarres-Sanavy, M. Karimi and F. Ghanati. 2011. Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologiae Plantarum, 33: 105-112. [DOI:10.1007/s11738-010-0521-y]
14. Kafi, M., A. Bagheri, J. Nabati, M. Zare Mehrjerdi and A. Masoumi. 2010. Effect of salinity stress on some physiological variables of eleven chickpea genotypes in hydroponics. Journal of Science and Technology of Greenhouse Culture, 4: 55-69 (In Persian).
15. Kanwel, S., M. Ashraf, M. Shahbaz and M. Yasir. 2013. Influence of saline stress on growth, gas exchange nutrients and non-enzymatic antioxidants munbean. Pakistan Journal of Botany, 45: 763-771.
16. Klimczak, I., M. Maecka, M. Szlachta and A. Gliszcyn. 2007. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. Journal of Food Composition and Analysis, 20: 313-322. [DOI:10.1016/j.jfca.2006.02.012]
17. Kuk, Y., J. Shin, S. Burgo, R. Hwang, O. Jung and J.O. Guh. 2003. Antioxidative enzymes offer protection from chilling damage plants. Crop Science, 43: 2109-2117. [DOI:10.2135/cropsci2003.2109]
18. Lichtenthaler, H.K. 1987. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148: 350-382. [DOI:10.1016/0076-6879(87)48036-1]
19. Mirzaei, M. 2000. The study of drought stress on germination and seedling growth in some of canola cultivars. Master's thesis, Faculty of Agriculture, Tarbiat Modarres University,
20. Moharramnejad, S., O. Sofalian, M. Valizadeh, A. Asgari and M.R. Shiri. 2015. Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings. Journal of Bioscience and Biotechnology, 4: 313-319.
21. Mozafar, A. and J.R. Goodin. 1986. Salt tolerance of two different drought-tolerant wheat genotypes during germination and early seedling growth. Plant and Soil, 96: 303-316. [DOI:10.1007/BF02375135]
22. Nakano, Y. and K. Asada. 1981. Hydrogen Peroxide Is Scavenged by Ascorbate Specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22: 867-880.
23. Nasrollahi, V., A. Mirzaie-asl, K. Piri, S. Nazeri and R. Mehrabi. 2014. The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in licorice (Glycyrrhiza glabra). Phytochemistry, 103: 32-37. [DOI:10.1016/j.phytochem.2014.03.004]
24. Netondo, G.W., J.C. Onyango and E. Beck. 2004. Sorghum and salinity. I: Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science, 44: 797-805. [DOI:10.2135/cropsci2004.7970]
25. Noreen, Z. and M. Ashraf. 2009. Assessment of variation in antioxidative defense system in salttreated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. Journal of Plant Physiology, 166: 1764-1774. [DOI:10.1016/j.jplph.2009.05.005]
26. Ozgur, R., I. Turkan, B. Uzilday and A.H. Sekmen. 2014. Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. Journal of Experimental Botany, 65: 1377-1390. [DOI:10.1093/jxb/eru034]
27. Pan, Y., L.J. Wu and Z.L. Yu. 2006. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 49: 157-165. [DOI:10.1007/s10725-006-9101-y]
28. Parida, A.K., A.B. Das, Y. Sanada and P. Mohanty. 2004. Effects of salinity on biochemical components of the mangrove, (Aegiceras corniculatum). Aquatic Botany, 80: 77-87. [DOI:10.1016/j.aquabot.2004.07.005]
29. Salami, M., A. Safarnejad and H. Hamidi. 1385. Effect of salinity stress on morphological characteristics of Valeriana officinalis and Cuminum cyminum. Research and Construction in Natural Resources, 19: 77-83 (In persian).
30. Selmar, D. and M. Kleinwächter. 2013. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Industrial Crops and Products, 42: 558-566. [DOI:10.1016/j.indcrop.2012.06.020]
31. Sidsel Fiskaa, H., I. Grethe, A. Borge, A. Knut and B. Gunnar. 2009. Effect of cold storage and harvest data on bioactive compound in curly kale (Brassica oleracea L. var. acephala). Postharvest Biology and Technology, 51: 36-42 [DOI:10.1016/j.postharvbio.2008.04.001]
32. Simkin, A.J., H. Moreau, M. Kuntz, G. Pagny, C. Lin, S. Tanksley and J. McCarthy. 2008. An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. Journal of Plant Physiology, 165: 1087-1106. [DOI:10.1016/j.jplph.2007.06.016]
33. Singleton, V.L. and J.A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16: 144-158.
34. Turtola, S., A. Manninen, R. Rikala and P. Kainulainen. 2003. Drought stress alters the concentration of wood terpenoids in scots pine and Norway spruce seedling. Journal of Chemical Ecology, 29: 1981-1995. [DOI:10.1023/A:1025674116183]
35. Ulumi, H. and N. Hasibi. 1391. Study of secondary metabolites of licorice root in some natural habitats of Kerman province. Journal of Medicinal Plants, 11: 137-144 (In persian).
36. Zhang, X.Y., R.J. Wu, J. Chen and D.K. An. 1989. Determination of glycyrrhizin and its metabolite glycyrrhetinic acid in rabbit plasma by high-performance liquid chromatography after oral administration of licorzin. Journal of Chromatography A, 495: 343-348. [DOI:10.1016/S0378-4347(00)82643-2]
37. Zlatev, Z. and F.C. Lidon. 2012. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture, 24: 57-72. [DOI:10.9755/ejfa.v24i1.10599]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb