دوره 11، شماره 32 - ( زمستان 1398 )                   جلد 11 شماره 32 صفحات 116-123 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salimian Rizi S, Soltanloo H, Ramezanpour S, Choukan R, Nasrolahnezhad Ghomi A A. Determination of Optimum Irradiation Dose and Evaluation of Morphophysiological and Biochemical Indices of SC704 maize Hybrid under Different Doses of Gamma Irradiation. jcb. 2019; 11 (32) :116-123
URL: http://jcb.sanru.ac.ir/article-1-901-fa.html
سلیمیان ریزی سیاوش، سلطانلو حسن، رمضانپور سیده ساناز، چوکان رجب، نصرالله نژاد قمی علی اصغر. تعیین دز بهینه و بررسی شاخص‌های مورفوفیزیولوژیکی و بیوشیمیایی هیبرید سینگل‌کراس 704 ذرت تحت دزهای مختلف پرتو گاما. پژوهشنامه اصلاح گیاهان زراعی. 1398; 11 (32) :116-123

URL: http://jcb.sanru.ac.ir/article-1-901-fa.html


گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده:   (498 مشاهده)
     جهش‌های القا شده توسط پرتوگاما در اصلاح بسیاری از صفات مهم زراعی در گیاهان نقش دارند. تعیین دز بهینه برای القای جهش به‌عنوان مهم ترین مرحله در آزمایشات و ایجاد مواد ژنتیکی جهش یافته محسوب می‌شود. هدف از این مطالعه تعیین دز بهینه پرتوتابی گاما و همچنین بررسی اثر دزهای مختلف این پرتو (صفر، 150، 200، 250 و 300 گری) روی برخی خصوصیات رشدی و بیوشیمیایی در مراحل اولیه نموی هیبرید سینگل‌کراس 704 ذرت بود. با استفاده از تجزیه پروبیت، دز مناسب پرتوگاما برای القای جهش در سینگل‌کراس 704، 96/212 گری تعیین گردید. تفاوت معنی‌داری برای تیمار دز پرتو درتمامی صفات رشدی، شامل طول ریشه‌چه، طول ساقه‌چه، وزن تر ریشه‌چه، وزن تر ساقه‌چه، وزن خشک ریشه‌چه و وزن خشک ساقه‌چه، ارتفاع گیاه و درصد بقا مشاهده شد. باافزایش سطح دز پرتوتابی میزان کربوهیدرات کل، مالون‌دی‌آلدهید، پراکسید هیدروژن و فعالیت آنزیم‌های کاتالاز و پراکسیداز افزایش یافت.

 
متن کامل [PDF 1032 kb]   (95 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح موتاسيوني
دریافت: 1396/10/24 | ویرایش نهایی: 1398/11/13 | پذیرش: 1397/6/11 | انتشار: 1398/10/23

فهرست منابع
1. Aebi, H. 1984. Catalase in vitro. In Methods in enzymology, pp: 121-126: Elsevier [DOI:10.1016/S0076-6879(84)05016-3]
2. Allen, R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant physiology 107: 1049. [DOI:10.1104/pp.107.4.1049]
3. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual review of plant biology, 50: 601-639. [DOI:10.1146/annurev.arplant.50.1.601]
4. Bagheri, L., R. Amiri-Khah and K. Mozafari. 2017. Effect of Gamma Irradiation on Growth and Determine Optimum Dose in Order to Induce Genetic Variation in landrace Rice. Journal of Crop Breeding, 9: 130-138. [DOI:10.29252/jcb.9.21.130]
5. Bird, R., S.S. Hung, M. Hadley and H. Draper. 1983. Determination of malonaldehyde in biological materials by high-pressure liquid chromatography. Analytical biochemistry, 128: 240-244. [DOI:10.1016/0003-2697(83)90371-8]
6. Calucci, L., C. Pinzino, M. Zandomeneghi, A. Capocchi, S. Ghiringhelli, F. Saviozzi, S. Tozzi and L. Galleschi. 2003. Effects of γ-irradiation on the free radical and antioxidant contents in nine aromatic herbs and spices. Journal of Agricultural and Food Chemistry, 51: 927-934. [DOI:10.1021/jf020739n]
7. Chaudhuri, S.K. 2002. A simple and reliable method to detect gamma irradiated lentil (Lens culinaris Medik.) seeds by germination efficiency and seedling growth test. Radiation Physics and Chemistry, 64: 131-136. [DOI:10.1016/S0969-806X(01)00467-4]
8. Esfandiari, E., V. Enayati and A. Abbasi. 2011. Biochemical and physiological changes in response to salinity in two durum wheat (Triticum turgidum L.) genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39: 165. [DOI:10.15835/nbha3915625]
9. Esfandiari, E., A. Javadi, M. Shokrpour and F. Shekari. 2011. The effect of salt stress on the antioxidant defense mechanisms of two wheat (Triticum aestivum L.) cultivars. Fresenius Environ. Bull, 20: 2021-2026.
10. Gniazdowska, A., U. Krasuska and R. Bogatek. 2010. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta, 232: 1397-1407. [DOI:10.1007/s00425-010-1262-2]
11. Golden, T.R., D.A. Hinerfeld and S. Melov. 2002. Oxidative stress and aging: beyond correlation. Aging cell, 1: 117-23. [DOI:10.1046/j.1474-9728.2002.00015.x]
12. Hallauer, A.R., M.J. Carena and J.D. Miranda Filho. 2010. Testers and combining ability. In Quantitative genetics in maize breeding, pp: 383-423: Springer. [DOI:10.1007/978-1-4419-0766-0_8]
13. Hameed, A., T.M. Shah, B.M. Atta, M.A. Haq and H. Sayed. 2008. Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabuli chickpea. Pakistan Journal of Botany, 40: 1033-1041.
14. Irigoyen, J., D. Einerich and M. Sánchez‐Díaz. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia plantarum, 84: 55-60. [DOI:10.1111/j.1399-3054.1992.tb08764.x]
15. Kafi, M., A. Borzoui, M. Salehi, A. Kamandi, A. Masoumi and J. Nabati. 2009. Physiology of environmental stresses in plants.
16. Kiong, A.L.P., A.G. Lai, S. Hussein and A.R. Harun. 2008. Physiological responses of orthosiphon stamineus plantlets to gamma irradiation. American-Eurasian journal of sustainable agriculture, 2: 135-149.
17. Kodym, A., R. Afza, B. Forster, Y. Ukai, H. Nakagawa and C. Mba. 2012. Methodology for physical and chemical mutagenic treatments. Plant mutation breeding and biotechnology. CABI, Wallingford: 169-180. [DOI:10.1079/9781780640853.0169]
18. Kovacs, E. and A. Keresztes. 2002. Effect of gamma and UV-B/C radiation on plant cells. Micron, 33: 199-210. [DOI:10.1016/S0968-4328(01)00012-9]
19. Majd, F. and M.R. Ardakani. 2002. Application of Nuclear Techniques in Agricultural Sciences (In Persian).
20. Marwood, C.A. and B.M. Greenberg. 1996. Effect of supplementary UVB radiation on chlorophyll synthesis and accumulation of photosystems during chloroplast development in Spirodela oligorrhiza. Photochemistry and photobiology, 64: 664-670. [DOI:10.1111/j.1751-1097.1996.tb03121.x]
21. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7: 405-410. [DOI:10.1016/S1360-1385(02)02312-9]
22. Motamedi, M., Z. Khodarahmpour and H.N. Rad. 2011. Study of physiologic tolerance of Safflower (Carthamus tinctorius L.) genotypes on salinity stress in germination stage and seedling growth (In Persian). Journal of Crop Breeding, 8: 81-92.
23. Neill, S., R. Desikan and J. Hancock. 2002. Hydrogen peroxide signalling. Current opinion in plant biology, 5: 388-395. [DOI:10.1016/S1369-5266(02)00282-0]
24. Polesskaya, O., E. Kashirina and N. Alekhina. 2004. Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply. Russian journal of plant physiology, 51: 615-620. [DOI:10.1023/B:RUPP.0000040746.66725.77]
25. Polle, A. 2001. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology, 126: 445-462. [DOI:10.1104/pp.126.1.445]
26. Preuss, S. and A. Britt. 2003. A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics, 164: 323-334.
27. R, J.S., M. Kalantari, K. Ahmadi and A. Mousavi. 2007. The effect of lidocaine and terazol on the accumulation of antioxidants in tomato seedlings under cold stress. Iran Biology Magazin, 20: 290-298.
28. Saborío, F., G. Umaña, W. Solano, P. Amador, G. Muñoz, A. Valerin, A. Torres and R. Valverde. 2004. Induction of genetic variation in Xanthosoma spp. Genetic improvement of under-utilized and neglected crops in low income food deficit countries through irradiation and related techniques: 143-154.
29. Sairam, R. and G. Srivastava. 2002. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162: 897-904. [DOI:10.1016/S0168-9452(02)00037-7]
30. Sgherri, C.L.M., M. Maffei and F. Navari-Izzo. 2000. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. Journal of Plant Physiology, 157: 273-279. [DOI:10.1016/S0176-1617(00)80048-6]
31. Shelmani, M., M.B.N. Khiabani, H.A. Mostafavi, M. Heydarieh and A. Majdabadi. 2009. Nuclear agriculture (In persian).
32. Shirasu, K., H. Nakajima, V.K. Rajasekhar, R.A. Dixon and C. Lamb. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. The Plant Cell, 9: 261-270. [DOI:10.1105/tpc.9.2.261]
33. Singletary, G.W., R. Banisadr and P.L. Keeling. 1994. Heat stress during grain filling in maize: effects on carbohydrate storage and metabolism. Functional Plant Biology, 21: 829-841. [DOI:10.1071/PP9940829]
34. Srivastava, S.K. 1987. Peroxidase and Poly-Phenol Oxidase in Brassica juncea Plants Infected with Macrophomina phaseolina (Tassai) Goid. and their Implication in Disease Resistance. Journal of Phytopathology, 120: 249-254. [DOI:10.1111/j.1439-0434.1987.tb04439.x]
35. Tuteja, N. and S.K. Sopory. 2008. Chemical signaling under abiotic stress environment in plants. Plant signaling & behavior, 3: 525-536. [DOI:10.4161/psb.3.8.6186]
36. Ufaz, S. and G. Galili. 2008. Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiology, 147: 954-961. [DOI:10.1104/pp.108.118091]
37. Van Harten, A.M. 1998. Mutation breeding: theory and practical applications: Cambridge University Press.
38. Wi, S.G., B.Y. Chung, J.S. Kim, J.H. Kim, M.H. Baek, J.W. Lee and Y.S. Kim. 2007. Effects of gamma irradiation on morphological changes and biological responses in plants. Micron, 38: 553-564. [DOI:10.1016/j.micron.2006.11.002]
39. Willekens, H., S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels, M. Van Montagu, D. Inzé and W. Van Camp. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO journal, 16: 4806-4816. [DOI:10.1093/emboj/16.16.4806]
40. Yang, T. and B. Poovaiah. 2002. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences, 99: 4097-4102. [DOI:10.1073/pnas.052564899]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2021 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb