دوره 12، شماره 34 - ( تابستان 1399 )                   جلد 12 شماره 34 صفحات 210-217 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbarzadeh Lelekami M, Pahlevani M H, Zaynali Nezhad K, Mahdavi Mashaki K, P.M. Weber A, Brilhaus D. Response of some of Primary Metabolites in Rice (Oryza sativa L.) Root to Salinity Stress. jcb. 2020; 12 (34) :210-217
URL: http://jcb.sanru.ac.ir/article-1-1118-fa.html
اکبرزاده للکامی مژده، پهلوانی محمدهادی، زینلی‌نژاد خلیل، مهدوی ماشکی کیوان، پی.ام وبر آندریاس، بریل‌هاوس دومینیک. پاسخ‌ برخی از متابولیت‌های اولیه ریشه برنج (Oryza sativa L.) به تنش شوری. پژوهشنامه اصلاح گیاهان زراعی. 1399; 12 (34) :210-217

URL: http://jcb.sanru.ac.ir/article-1-1118-fa.html


دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده:   (264 مشاهده)
به­ منظور بررسی واکنش ­های متابولیکی ریشه برنج به تنش شوری در مرحله گیاهچه ­ای، آزمایشی به­ صورت فاکتوریل در قالب طرح کاملاً تصادفی در پنج تکرار در شرایط گلخانه اجرا شد که طی آن دو ژنوتیپ متحمل CSR28 و ژنوتیپ حساس IR28 در دو سطح شوری صفر و 150 میلی‌مولار و دو زمان نمونه ­برداری 6 و 54 ساعت مورد بررسی قرار گرفتند. در مجموع در پاسخ به شوری 36 متابولیت اولیه (شامل 18 اسیدآمینه، پنج قند و قند-الکل و 13 اسید آلی( در ریشه با استفاده از آنالیز GC-MS شناسایی شدند. اسیدهای­ آمینه بیشترین تجمع را در پاسخ به شوری بالا نشان دادند. همچنین با افزایش مدت زمان تیمار شوری اختلاف بین ژنوتیپ‌ها افزایش یافت و ژنوتیپ متحمل CSR28 به ­طور چشمگیری تجمع بالاتر در مقدار اسیدهای­ آمینه نشان­داد که حاکی از نقش سازوکارهای تنظیم اسمزی در القای تحمل بود. از میان قندهای شناسایی شده، رافینوز و میواینوزیتول بیشترین افزایش را مخصوصاً در زمان نمونه ­برداری 54 ساعت در ژنوتیپ متحمل نشان دادند که بیانگر فعالیت آنتی­ اکسیدانی آنها بود. به ­طور کلی نتایج این تحقیق بیانگر ضرورت شناسایی و مطالعه مسیرهای متابولیکی به­ منظور درک مکانیسم‌های مولکولی تحمل به تنش شوری و در نتیجه اصلاح ارقام متحمل برنج می ­باشد.
متن کامل [PDF 666 kb]   (52 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: 1399/1/22 | ویرایش نهایی: 1399/5/5 | پذیرش: 1399/3/21 | انتشار: 1399/4/10

فهرست منابع
1. Ashraf, M. and M.R. Foolad. 2007. Role of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
2. Batista‐Silva, W., B. Heinemann, N. Rugen, A. Nunes‐Nesi, W.L. Araújo, H.P. Braun and T.M. Hildebrandt. 2019. The role of amino acid metabolism during abiotic stress release. Plant, Cell and Environment, 42(5): 1630-1644. [DOI:10.1111/pce.13518]
3. Chaves, M., J. Flexas and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4): 551-560. [DOI:10.1093/aob/mcn125]
4. Fiehn, O., J. Kopka, P. Dörmann, T. Altmann, R.N. Trethewey and L. Willmitzer. 2000. Metabolite profiling for plant functional genomics. Nature Biotechnology, 18(11): 1157. [DOI:10.1038/81137]
5. Fiehn, O. 2002. Metabolomics- the link between genotypes and phenotypes. Plant Molecular Biology, 48: 155-171. [DOI:10.1007/978-94-010-0448-0_11]
6. Food and Agriculture Organization of the United Nations, FAOSTAT. Rome, Italy. FAO. 2018. Available at: http://www.fao.org/faostat/en/#data/QC (Accessed 01 Apr 2020).
7. Fougere, F., D.L. Rudulier and J.G. Streeter. 1991. Effects of salt stress on amino acids, organic acids, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology, 96: 1228-1236. [DOI:10.1104/pp.96.4.1228]
8. Funck, D., B. Stadelhofer and W. Koch. 2008. Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biology, 40: 1-14. [DOI:10.1186/1471-2229-8-40]
9. Gerona, M.E.B., M.P. Deocampo, J.A. Egdane, A.M. Ismail and M.L. Dionisio-Sese. 2019. Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Rice Reproductive Stage. Science, 26(4): 207-219. [DOI:10.1016/j.rsci.2019.05.001]
10. Good, A.G. and S.T. Zaplachinski. 1994. The effects of drought stress on free amino acid accumulation and protein-synthesis in Brassica napus. Physioloy Plant, 90: 9-14. [DOI:10.1034/j.1399-3054.1994.900102.x]
11. Gu, J., K. Weber, E. Klemp, G. Winters, S.U. Franssen, I. Wienpahl and E. Bornberg Bauer. 2012. Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness. Integrative Biology, 4(5): 480-493. [DOI:10.1039/c2ib00109h]
12. Hashemi, A., GH. Nematzadeh, GH. Hosseini Salekdeh, S.A. Hosseini and M.R. Hajirezaei. 2012. Physiological and metabolic responses in rice under salt stress. Crop Biotechnology, 2: 1-14 (In Persian).
13. Heenan, D., L. Lewin and D. McCaffery. 1988. Salinity tolerance in rice varieties at different growth stages. Australian Journal of Experimental Agriculture, 28(3): 343-349. [DOI:10.1071/EA9880343]
14. Hu, C.A., A.J. Delauney and D.P. Verma. 1992. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of the National Academy of Sciences, 89(19): 9354-9358. [DOI:10.1073/pnas.89.19.9354]
15. Hu, L., K. Zhou, Y. Li, X. Chen, B. Liu, C. Li. and F. Ma. 2018. Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis Rehd. Plant Physiology and Biochemistry, 133: 116-126. [DOI:10.1016/j.plaphy.2018.10.037]
16. Jia, Q., D. Kong, Q. Li, S. Sun, J. Song, Y. Zhu and J. Huang. 2019. The function of inositol phosphatases in plant tolerance to abiotic stress. International Journal of Molecular Sciences, 20(16): 3999. [DOI:10.3390/ijms20163999]
17. Jiménez-Bremont, J.F., A. Becerra-Flora, E. Hernández-Lucero, M. Rodríguez-Kessler, J.A. Acosta-Gallegos and J.G. Ramírez-Pimentel. 2006. Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biologia Plantarum, 50(4): 763-766. [DOI:10.1007/s10535-006-0126-x]
18. Joshi, V., J.G. Joung, Z.J. Fei and G. Jander. 2010. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 39: 933-947. [DOI:10.1007/s00726-010-0505-7]
19. Kim, J.K., T. Bamba, K. Harada, E. Fukusaki and A. Kobayashi. 2007. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. Journal of Experimental Botany, 58: 415-424. [DOI:10.1093/jxb/erl216]
20. Lehmann, M., M. Laxa, L. Sweetlove, A. Fernie and T. Obata. 2012. Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress. Metabolomics, 8: 143-153. [DOI:10.1007/s11306-011-0296-1]
21. Liang, J,. Y. Qu, C. Yang, X. Ma, G. Cao and Z. Zhao. 2010. Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress. Euphytica, 01: 201. [DOI:10.1007/s10681-014-1236-8]
22. Lisec, J., N. Schauer, J. Kopka, L. Willmitzer and A. Fernie. 2006. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1: 387-396. [DOI:10.1038/nprot.2006.59]
23. Nemati, I., F. Moradi, M.A. Esmaeili and S. Gholizadeh. 2011. The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant Soil Environ, 1: 26-33. [DOI:10.17221/71/2010-PSE]
24. Nishizawa, A., Y. Yabuta and S. Shigeoka. 2008. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiology, 147(3): 1251-1263. [DOI:10.1104/pp.108.122465]
25. Omrani, B. and S. Moharramnejad. 2017. Study of salinity tolerance in four maize (Zea Mays L.) Hybrids at Seedling Stage. Journal of Crop Breeding, 9(24): 79-86 (In Persian). [DOI:10.29252/jcb.9.24.79]
26. Pandit, A., V. Rai, T.R. Sharma and N. K. Singh. 2011. Differentially expressed genes in sensitive and tolerant rice varieties in response to salt-stress. Plant Biochemistry and Biotechnology, 20: 149-154. [DOI:10.1007/s13562-010-0022-5]
27. Valliyodan, B. and H.T. Nguyen. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 9: 1-7. [DOI:10.1016/j.pbi.2006.01.019]
28. Verbruggen, N. and C. Hermans. 2008. Proline accumulation in plants: a review. Amino Acids, 35: 753-759. [DOI:10.1007/s00726-008-0061-6]
29. Wang, J., J. Zhu, Y. Zhang, F. Fan, W. Li, F. Wang and J. Yang. 2018. Comparative transcriptome analysis reveals molecular response to salinity stress of salt-tolerant and sensitive genotypes of indica rice at seedling stage. Scientific reports, 8(1): 1-13. [DOI:10.1038/s41598-018-19984-w]
30. Wang, W.S., X.Q. Zhao, M. Li, L.Y. Huang, J.L. Xu, F. Zhang and Z.K. Li. 2016. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. Journal of Experimental Botany, 67(1): 405-419. [DOI:10.1093/jxb/erv476]
31. Widodo, P., J.H.E. Newbigin, M. Tester, A. Bacic and U. Roessner. 2009. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salt tolerance. Journal of Experimental Botany, 60: 4089-4103. [DOI:10.1093/jxb/erp243]
32. Yancey, P.H. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208(15): 2819-2830. [DOI:10.1242/jeb.01730]
33. Yoshida, S., D.A. Forno and J.H. Cock. 1976. Laboratory manual for physiological studies of rice. 3th edn. Los Banos, Laguna, Philippines, 83 pp.
34. Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53(1): 247-273. [DOI:10.1146/annurev.arplant.53.091401.143329]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb