Volume 10, Issue 26 (9-2018)                   jcb 2018, 10(26): 12-21 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

zare kohan M, Babaeian Jelodar N, aghnoum R, tabatabaee S A, Kazemi Tabar S K. (2018). Association Mapping of Some Phenological Traits in Barley under Salt Stress. jcb. 10(26), 12-21. doi:10.29252/jcb.10.26.12
URL: http://jcb.sanru.ac.ir/article-1-679-en.html
Abstract:   (3448 Views)

Current research was performed to identify molecular markers associated to phonological traits including days to tillering, days to stem elongation, days to heading, days from stem elongation to heading, grain filling period and days to physiological maturity based on 407 AFLP and SSR markers in 148 barley cultivars by association mapping. This experiment was conducted in two alpha lattice designs with five incomplete blocks in two replications under normal and salt stress (EC=12 dsm-1) conditions in Agriculture and Natural Resources Research and Education Center, Yazd, Iran in 2015-16. Association mapping was evaluated based on mixed linear model (MLM) using Structure and Tassel soft wares. Based on the 407 markers used in this study, population genetic structure subdivided into two subpopulations (K=2) that barplot results also confirmed it. In association mapping based on MLM, 4 and 46 markers showed significant relation with assessed traits under normal and salt stress, respectively and explained considerable variations of studied traits. In this study, some co-localized QTLs were identified for studied traits. Common markers between of traits can be due to pleiotropic effects or linkage between of genomic regions involved in these traits. Results of the current study presented useful information about the genetic basis of the studied traits and can be used in different barley breeding programs including marker-assisted selection.
 
 

Full-Text [PDF 1979 kb]   (1083 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/12/26 | Revised: 2018/09/26 | Accepted: 2017/02/26 | Published: 2018/09/26

References
1. Colmer, T.D., R. Munns and T.J. Flowers. 2005. Improving salt tolerance of wheat and barley: future prospects. Australian Journal of Experimental Agriculture, 45: 1425-1443. [DOI:10.1071/EA04162]
2. Ellis, R.P., B.P. Forster, D. Robinson, L.L. Handley, D.C. Gordon, J.R. Russell and W. Powell. 2000. Wild barley: a source of genes for crop improvement in the 21st century? Journal of Experimental Botany, 51(342): 9-17. [DOI:10.1093/jexbot/51.342.9]
3. Elakhdar, A., M.A. EL-Sattar, K. Amer, A. Rady and T. Kumamaru. 2016. Genetic diversity and association analysis among Egyptian barley (Hordeum vulgare L.) genotypes with different adaptations to saline conditions analyzed by SSR markers. Australian Journal of crop science, 10(5): 637-645. [DOI:10.21475/ajcs.2016.10.05.p7331]
4. Elakhdar, A., M.A. EL-Sattar, K. Amer, A. Rady and T. Kumamaru. 2016. Population structure and marker-trait association of salt tolerance in barley (Hordeum vulgare L.). Comptes Rendus Biologies, 8 pp. [DOI:10.1016/j.crvi.2016.06.006]
5. EL-Denary, M.E., M.N. Noaman, A.F. Abdelkhalek and S.A. Mariey. 2012. Marker traits association of some barley genotypes under soil salinity condition using SSR markers. Egyptian Journal of Genetics and Cytology, 41: 229-252. [DOI:10.21608/ejgc.2012.10537]
6. Eleuch, L., A. Jilal, S. Grando, S. Ceccarelli, M.K. Schmising, A. Hajer, A. Daaloul and M. Baum. 2008. Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using SSR markers. Journal of Integrative Plant Biology, 50(8): 1004-1014. [DOI:10.1111/j.1744-7909.2008.00670.x]
7. Falush, D., M. Stephens and J.K. Pritchard. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4): 1567-1587.
8. Fan, Y., G. Zhou, S. Shabala, Z.H. Chen, S. Cai, C. Li and M. Zhou. 2016. Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.). Frontiers in Plant Science, 7: 1-10. [DOI:10.3389/fpls.2016.00946]
9. Flint-Garcia, S.A., J.M. Thornsberry and E.S. Buckler. 2003. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 54: 357-74. [DOI:10.1146/annurev.arplant.54.031902.134907]
10. Flint-Garcia S.A., A.C. Thuillet, J. Yu, G. Pressoir, S.M. Romero and S.E. Mitchell. 2005. Maize association population: A High resolution platform for quantitative trait locus dissection. Plant Journal, 44(6): 1054-1064. [DOI:10.1111/j.1365-313X.2005.02591.x]
11. Flowers, T.J. 2004. Improving crop salt tolerance. Journal of Experimental Botany, 55(396): 307-319. [DOI:10.1093/jxb/erh003]
12. Flowers, T.J. and S.A. Flowers. 2005. Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management, 78(1): 15-24. [DOI:10.1016/j.agwat.2005.04.015]
13. Ghavami, F., E.M. Elias, S. Mamidi, O. Ansari, M. Sargolzaei, T. Adhikari, M. Mergoum and S.F. Kianian. 2011. Mixed model association mapping for Fusarium head blight resistance in Tunisian-derived durum wheat populations, G3: Genes/Genomes/Genetics, 1(3): 209-218. [DOI:10.1534/g3.111.000489]
14. Gupta, P.K., S. Rustgi and P.L. Kulwal. 2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 57: 461-485. [DOI:10.1007/s11103-005-0257-z]
15. Hittalmani, S., N. Huang, B. Courtois, R. Venuprasad, H.E. Shashidhar, J.Y. Zhuang, K.L. Zheng, G.F. Liu, G.C. Wang, J.S. Sidhu, S. Srivantaneeyakul, V.P. Singh, P.G. Bagali, H.C. Prasanna, G. McLaren and G.S. Khush. 2003. Identification of QTL for growth and grain yield-related traits in rice across nine locations of Asia. Theoretical and Applied Genetics, 107: 679-690. [DOI:10.1007/s00122-003-1269-1]
16. Inostroza, L., A. delPozo, I. Matus, D. Castillo, P. Hayes, S. Machado and A. Corey. 2008. Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Molecular Breeding, 23: 365-376. [DOI:10.1007/s11032-008-9239-6]
17. Kilian, B., H. Ozkan, J. Kohl, A. von Haeseler, F. Barale, O. Deusch, A. Brandolini, C. Yucel, W. Martin and F. Salamini. 2006. Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Molecular Genetics and Genomics, 276(3): 230-241. [DOI:10.1007/s00438-006-0136-6]
18. Kraakman, A.T.W., F. Martıinez, B. Mussiraliev, F.A. Van Eeuwijk and R.E. Niks. 2006. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Molecular Breeding, 17(1): 41-58. [DOI:10.1007/s11032-005-1119-8]
19. Kraakman, A.T.W., R.E. Niks, P.M.M.M. Van den berg, P. Stam and F.A. Van Eeuwijk. 2004. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 168(1): 435-446. [DOI:10.1534/genetics.104.026831]
20. Long, N.V., O. Dolstra, M. Malosetti, B. Kilian, A. Graner, R.G.F. Visser and C.G. van der Linden. 2013a. Association mapping of salt tolerance in barley-(Hordeum vulgare L.). Theoretical and Applied Genetics, 126(9): 2335-2351. [DOI:10.1007/s00122-013-2139-0]
21. Maas, E.V. and G.J. Hoffman. 1977. Crop salt tolerance-current assessment. Journal of the Irrigation and Drainage Division, 103(2): 115-134.
22. Mohamed, N.E.M., A.A. Said, A.A. Naz, A. Bauer, B. Mathew, H. Schumann, A. Reinders and J. Léon. 2014. Association Mapping for Shoot Traits Related to Drought Tolerance in Barley. International Journal of Agriculture Innovations and Research, 3(1): 68-79.
23. Mohammadi, M., A. Taleei, H. Zeinali, M.R. Naghavi, S. Ceccarelli, S. Grando and M. Baum. 2005. QTL analysis for phenology traits in doubled haploid population of barley. Agricultural and Biological Chemistry, 7(5): 820-823.
24. Moose, S.P. and R.H. Mumm. 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147(3): 969-977. [DOI:10.1104/pp.108.118232]
25. Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167(3):645-663. [DOI:10.1111/j.1469-8137.2005.01487.x]
26. Munns R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biolology, 59: 651-681. [DOI:10.1146/annurev.arplant.59.032607.092911]
27. Munoz-Amatriaın, M., A. Cuesta-Marcos, J.B. Endelman, J. Comadran, J.M. Bonman, H.E. Bockelman, S. Chao, J. Russell, R. Waugh, P.M. Hayes and G.J. Muehlbauer. 2014. The USDA Barley Core Collection: Genetic Diversity, Population Structure, and Potential for Genome-Wide Association Studies. PLoS ONE, 9(4): 88-94.] [DOI:10.1371/journal.pone.0094688]
28. Pasam, R.K., R. Sharma, M. Malosett, F.A. van Eeuwijk, G. Haseneyer, B. Kilian and A. Graner. 2012. Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biology, 12(16): 1-22. [DOI:10.1186/1471-2229-12-16]
29. Pauli, D., G.J. Muehlbauer, K.P. Smith, B. Cooper, D. Hole, D.E. Obert, S.E. Ullrich and T.K. Blake. 2014. Association Mapping of Agronomic QTLs in US Spring Barley Breeding Germplasm. The Plant Genome, 7(3): 1-15. [DOI:10.3835/plantgenome2013.11.0037]
30. Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945-959.
31. Sbei, H., K. Sato, T. Shehzad, M. Harrabi and K. Okuno. 2014. Detection of QTLs for salt tolerance in Asian barley (Hordeum vulgare L.) by association analysis with SNP markers. Breeding Science, 64(4): 378-388. [DOI:10.1270/jsbbs.64.378]
32. Schulte, D., T.J. Close, A. Graner, P. Langridge, T. Matsumoto, G. Muehlbauer, K. Sato, A.H. Schulman, R. Waugh, R.P. Wise and N. Stein. 2009. The International Barley Sequencing Consortium-At the Threshold of Efficient Access to the Barley Genome. Plant Physiology, 149(1): 142-147 [DOI:10.1104/pp.108.128967]
33. Shahraki, H., B.A. Fakheri and M. Allahdou. 2013. Genomic regions mapping for some phenological traits associated with salt tolerance in doubled haploid lines of barley (Hordeum-vulgare L.). International Journal of Agriculture and Crop Sciences, 6(7): 403-409
34. Spataro, G., B. Tiranti, P. Arcaleni, E. Bellucci, G. Attene, R. Papa, Z.P. Spagnoletti and V. Negri. 2011. Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theoretical and Applied Genetics, 122(7): 1281-1291. [DOI:10.1007/s00122-011-1530-y]
35. Sreenivasulu, N., A. Graner and U. Wobus. 2008. Barley Genomics: An Overview. International Journal of Plant Genomics, Article, 48: 58-62. [DOI:10.1155/2008/486258]
36. Tuberosa, R., S. Salvi, M.C. Sanguineti, P. Landi, M. Maccaferri and S. Conti. 2002. Mapping QTLs regulating morpho-physiological traits and yield in drought stressed maize: case studies, shortcomings and perspectives. Annals of Botany, 89(7): 941-963. [DOI:10.1093/aob/mcf134]
37. Yu, J. and E.S. Buckler. 2006. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 17(2): 155-160. [DOI:10.1016/j.copbio.2006.02.003]
38. Zhang, Q., C. Wu, F.Y. Ren and C. Zhang. 2012. Association analysis of important agronomical traits of maize inbred lines with SSRs. Journal of Crop Science, 6(6): 1131-1138.
39. Zhu, C., M. Gore, E.S. Buckler and J. Yu. 2008. Status and prospects of association mapping in plants. The Plant Genome, 1(1): 5-20. [DOI:10.3835/plantgenome2008.02.0089]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb