1. Alikamanoglu, S., Yaycili, O., & Sen, A. (2011). Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biological Trace Element Research, 141, 283-293. [
DOI:10.1007/s12011-010-8709-y]
2. Bartikova, H., Hanusova, V., Skalova, L., Ambroz, M., & Bousova, I. (2014). Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Current Topics in Medicinal Chemistry, 14(22), 2478-2494. https://doi: 10.2174/1568026614666141203120833 [
DOI:10.2174/1568026614666141203120833]
3. Batiha, G. E., Beshbishy, A. M., Tayebwa, D. S., Adeyemi, O. S., Yokoyama, N., & Igarashi, I. (2019). Anti-piroplasmic potential of the methanolic Peganum harmala seeds and ethanolic Artemisia absinthium leaf extracts. The Journal of Protozoology Research, 29(1-2), 8-25. [
DOI:10.32268/jprotozoolres.29.1-2_8]
4. Braunstein, S., Badura, M. L., Xi, Q., Formenti, S. C., & Schneider, R. J. (2009). Regulation of protein synthesis by ionizing radiation. Molecular and Cellular Biology, 29(21), 5645-5656. https://doi. org/10.1128/mcb.00711-09 [
DOI:10.1128/MCB.00711-09]
5. Caplin, N., & Willey, N. (2018). Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses. Frontiers in Plant Science, 9, 375099.
https://doi.org/10.3389/fpls.2018.00847 [
DOI:10. 3389/fpls.2018.00847]
6. Chi, Y. H., Koo, S. S., Oh, H. T., Lee, E. S., Park, J. H., Phan, K. A. T., Wi, S. D., Bae, S. B., Paeng, S. K., & Chae, H. B. (2019). The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Frontiers in Plant Science, 10, 444151. [
DOI:10.3389/fpls.2019.00750]
7. Desai, A. S., & Rao, S. (2014). Effect of gamma radiation on germination and physiological aspects of pigeon pea (Cajanus cajan (L.) millsp). Seedlings. International Journal of Research in Applied, Natural and Social Sciences, 2(6), 47-52. https://doi: 10.1002/fsn3.50 [
DOI:10.1002/fsn3.50]
8. Dhar, M. K., Koul, A., & Kaul, S. (2013). Farnesyl pyrophosphate synthase: a key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. New Biotechnology, 30(2), 114-123. https://doi: 10.1016/j.nbt.2012.07.001 [
DOI:10.1016/j.nbt.2012.07.001]
9. Gao, R., Yu, D., Chen, L., Wang, W., Sun, L., & Chang, Y. (2019). Cloning and functional analysis of squalene synthase gene from Dryopteris fragrans (L.) Schott. Protein Expression and Purification, 155, 95-103. https://doi: 10.1016/j.pep.2018.07.011 [
DOI:10.1016/j.pep.2018.07.011]
10. Geras' kin, S., Vasiliyev, D., Makarenko, E., Volkova, P., & Kuzmenkov, A. (2017). Influence of long-term chronic exposure and weather conditions on Scots pine populations. Environmental Science and Pollution Research, 24, 11240-11253.
https://doi.org/10.1007/s11356-017-8692-3 [
DOI:10.1007/s11356- 017-8692-3]
11. Gicquel, M., Esnault, M.-A., Jorrín-Novo, J. V., & Cabello-Hurtado, F. (2011). Application of proteomics to the assessment of the response to ionising radiation in Arabidopsis thaliana. Journal of Proteomics, 74(8), 1364-1377. [
DOI:10.1016/j.jprot.2011.03.025]
12. Hassanzadeh, F., Asghari Zakaria, R., Darvishzadeh, R., & Hosseinpour Azad, N. (2022). Enhanced Expression of Genes Involved in the Biosynthesis Pathway of Tanshinones in Tetraploid Plants of Salvia Officinalis L. Journal of Crop Breeding, 14(41), 184-193. https://doi:10.52547/jcb.14.41.184 [In Persian] [
DOI:10.52547/jcb.14.41.184]
13. Hassanzadeh, M., Hosseinpour azad, N., & Zoulfagharpour, F. (2022). The Mutagenic Effects of Environmental Radon Gas Radiation on the Tanshinone Related Metabolites in Artemisia Absinthium. Journal of Crop Breeding, 14(41), 129-137. https://doi:10.52547/jcb.14.41.129 [In Persian] [
DOI:10.52547/jcb.14.41.129]
14. Joiner, M.C., van der Kogel, A.J. and Steel, G.G. (2009) Introduction: The Significance of Radiobiology and Radiotherapy for Cancer Treatment. In: Joiner, M. and van der Kogel, A., Eds., Basic Clinical Radiobiology Fourth Edition, Hodder Arnold Publication, London, 1-10. [
DOI:10.1201/b13224-2]
15. http://dx.doi.org/10.1201/b13224-2 [
DOI:10.1201/b13224-2]
16. Madani, H., Escrich, A., Hosseini, B., Sanchez-Muñoz, R., Khojasteh, A., & Palazon, J. (2021). Effect of Polyploidy Induction on Natural Metabolite Production in Medicinal Plants. Biomolecules, 11(6), 899. [
DOI:10.3390/biom11060899]
17. Mu, J., Wang, Y., Wang, M., Zhang, D., & Liu, M. (2023). Identification of reliable reference genes for gene expression studies in mouse models under microplastics stress. Ecotoxicology and Environmental Safety, 252, 114569. doi.org/10.1016/j.ecoenv.2023.114569 [
DOI:10.1016/j.ecoenv.2023.114569]
18. Kirby, J., & Keasling, J. D. (2009). Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annual Review of Plant Biology, 60, 335-355. https://doi: 10.1146/annurev.arplant.043008.091955
10.1146/annurev.arplant.043008.091955 [
]
19. Kong, S.-G., & Okajima, K. (2016). Diverse photoreceptors and light responses in plants. Journal of Plant Research, 129, 111-114. https://doi 10.1007/s10265-016-0792-5 [
DOI:10.1007/s10265-016-0792-5]
20. Lü, X., de la Peña, L., Barker, C., Camphausen, K., & Tofilon, P. J. (2006). Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Research, 66(2), 1052-1061. doi: 10.1158/0008-5472.CAN-05-3459 [
DOI:10.1158/0008-5472.CAN-05-3459]
21. Møller, A. P., & Mousseau, T. A. (2015). Strong effects of ionizing radiation from Chernobyl on mutation rates. Scientific Reports, 5(1), 8363. [
DOI:10.1038/srep08363]
22. Pervan, M., Iwamoto, K. S., & McBride, W. H. (2005). Proteasome structures affected by ionizing radiation. Molecular Cancer Research, 3(7), 381-390. doi: 10.1158/1541-7786.MCR-05-0032 [
DOI:10.1158/1541-7786.MCR-05-0032]
23. Shabala, S., White, R. G., Djordjevic, M. A., Ruan, Y.-L., & Mathesius, U. (2015). Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Functional Plant Biology, 43(2), 87-104. [
DOI:10.1071/FP15252]
24. Sharopov, F. S., Sulaimonova, V. A., & Setzer, W. N. (2012). Composition of the Essential oil of Artemisia absinthium from Tajikistan. Records of Natural Products, 6(2). [
DOI:10.3923/pjbs.2008.946.949]
25. Shikanai, T. (2016). Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I. Photosynthesis Research, 129, 253-260. https://doi. org/10.1007/s11120-016-0227-0 [
DOI:10.1007/s11120-016-0227-0]
26. Sparrow, A. H., & Miksche, J. P. (1961). Correlation of nuclear volume and DNA content with higher plant tolerance to chronic radiation. Science, 134(3474), 282-283. https://doi.org/ 10.1126/science.134.3474.282 [
DOI:10.1126/science.134.3474.282]
27. Sukhov, V. (2016). Electrical signals as mechanism of photosynthesis regulation in plants. Photosynthesis Research, 130, 373-387. [
DOI:10.1007/s11120-016-0270-x]
28. Sukhov, V., Sherstneva, O., Surova, L., Katicheva, L., & Vodeneev, V. (2014). Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. Plant, Cell & Environment, 37(11), 2532-2541.
https://doi.org/10.1111/pce.12321 [
DOI:10.1111/pce.12321.]
29. Trivigno, D., Bornes, L., Huber, S. M., & Rudner, J. (2013). Regulation of protein translation initiation in response to ionizing radiation. Radiation Oncology, 8, 1-12.
https://doi.org/10.1186/1748-717X-8-35 [
DOI:10. 1186/1748-717x-8-35]
30. Vanhoudt, N., Horemans, N., Wannijn, J., Nauts, R., Van Hees, M., & Vandenhove, H. (2014). Primary stress responses in Arabidopsis thaliana exposed to gamma radiation. Journal of Environmental Radioactivity, 129, 1-6. [
DOI:10.1016/j.jenvrad.2013.11.011]
31. Vardhan, P. V., & Shukla, L. I. (2017). Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. International Journal of Radiation Biology, 93(9), 967-979. [
DOI:10.1080/09553002.2017.1344788]
32. Vodeneev, V., Akinchits, E., & Sukhov, V. (2015). Variation potential in higher plants: mechanisms of generation and propagation. Plant Signaling & Behavior, 10(9), e1057365. https:// doi.org/10.1080/15592324.2015.1057365 [
DOI:10.1080/15592324.2015.1057365]
33. Zhang, D., Sun, W., Shi, Y., Wu, L., Zhang, T., & Xiang, L. (2018). Red and blue light promote the accumulation of artemisinin in Artemisia annua L. Molecules, 23(6), 1329. [
DOI:10.3390/molecules23061329]