1. Achkar, N. P., Cambiagno, D. A., & Manavella, P. A. (2016). miRNA biogenesis: a dynamic pathway. Trends in Plant Science, 21, 1034-1044.
https://doi.org/10.1016/j.tplants.2016.09.003 [
DOI:10.1016/j.tplants.2016.09.003.]
2. Ahmad, H. M., Wang, X., Ijaz, M., Oranab, S., Ali, M. A., & Fiaz, S. (2022). Molecular aspects of microRNAs and phytohormonal signaling in response to drought stress: a review. Current Issues in Molecular Biology, 44(8), 3695-3710.
https://doi.org/10.3390/cimb44080253 [
DOI:10.3390/cimb44080253.]
3. Arzani, A., Kumar, S., & Mansour M. M. F. (2023). Editorial: Salt tolerance in plants: molecular and functional adaptations. Frontiers in Plant Science, 14, 1280788.
https://doi.org/10.3389/fpls.2023.1280788 [
DOI:10.3389/fpls.2023.1280788.]
4. Asadi, A. A., Amini, A., Babaie, T., Eivazi, A. R., & Qudsi, M. (2024). Identification of genotypes tolerant to drought stress in wheat using quantitative indices in different regions of Iran's cold climate. Journal of Crop Breeding, 16(49), 17-31. [In Persian] [
DOI:10.61186/jcb.16.49.17]
5. Badar, U., Venkataraman, S., AbouHaidar, M., & Hefferon, K. (2021). Molecular interactions of plant viral satellites. Virus Genes, 57, 1-22.
https://doi.org/10.1007/s11262-020-01806-9 [
DOI:10.1007/s11262-020-01806-9.]
6. Baulcombe, D.C. (2022). The role of viruses in identifying and analyzing RNA silencing. Annual Review of Virology, 9, 353-373.
https://doi.org/10.1146/annurev-virology-091919-064218 [
DOI:10.1146/annurev-virology-091919-064218.]
7. Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends in Plant Science, 16(5), 265-272.
https://doi.org/10.1016/j.tplants.2011.02.010 [
DOI:10.1016/j.tplants.2011.02.010.]
8. Carbonell, A. (2022). RNAi tools for controlling viroid diseases. Virus Research, 313, 198729.
https://doi.org/10.1016/j.virusres.2022.198729 [
DOI:10.1016/j.virusres.2022.198729.]
9. Castel, S. E., & Martienssen, R. A. (2013). RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics, 14(2), 100-112.
https://doi.org/10.1038/nrg3355 [
DOI:10.1038/nrg3355.]
10. Catalanotto, C., Cogoni, C., & Zardo, G. (2016). microRNA in control of gene expression: an overview of nuclear functions. International Journal of Molecular Sciences, 17, 1712-1729.
https://doi.org/10.3390/ijms17101712 [
DOI:10.3390/ijms17101712.]
11. Chen, J., Zheng, Y., Qin, L., Wang, Y., Chen, L., He, Y., Fei, Z., & Lu, G. (2016). Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC Plant Biology, 16, 1-19.
https://doi.org/10.1186/s12870-016-0770-z [
DOI:10.1186/s12870-016-0770-z.]
12. Chen, X., & Rechavi, O. (2022). Plant and animal small RNA communications between cells and organisms. Nature Reviews Molecular Cell Biology, 23, 185-203.
https://doi.org/10.1038/s41580-021-00425-y [
DOI:10.1038/s41580-021-00425-y.]
13. Curtin, S. J., Wang, M., Watson, J. M., Roffey, P., Blanchard, C. L., & Waterhouse, P. M. (2014). RNA silencing and its application in functional genomics. Rice Functional Genomics, 1, 291-332.
https://doi.org/10.1007/0-387-48914-2_12 [
DOI:10.1007/0-387-48914-2-12.]
14. Das, S., & Singh, S. (2024). Small RNAs in plants: Are these magic bullets for imparting climate resilience in crops?. In non-coding RNAs (pp. 1-40). CRC Press. [
DOI:10.1201/9781003369288-1]
15. Deng, P., Muhammad, S., Cao, M., & Wu, L. (2018). Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. Plant Biotechnology Journal, 16, 965-975.
https://doi.org/10.1111/pbi.12882 [
DOI:10.1111/pbi.12882.]
16. Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., & Zheng, Y. (2009). Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany, 103, 29-38.
https://doi.org/10.1093/aob/mcn205 [
DOI:10.1093/aob/mcn205.]
17. Ding, S. W. (2023). Transgene silencing, RNA interference, and the antiviral defense mechanism directed by small interfering RNAs. Phytopathology, 113, 616-625.
https://doi.org/10.1094/PHYTO-10-22-0358-IA [
DOI:10.1094/PHYTO-10-22-0358-IA.]
18. Dong, Q., Hu, B., & Zhang, C. (2022). MicroRNAs and their roles in plant development. Frontiers in Plant Science, 13, 824240.
https://doi.org/10.3389/fpls.2022.824240 [
DOI:10.3389/fpls.2022.824240.]
19. Ergin, K., & Cetinkaya, R. (2022). Regulation of microRNAs. MiRNomics: MicroRNA Biology and Computational Analysis, 1, 1-32.
https://doi.org/10.1007/978-1-0716-1170-8_1 [
DOI:10.1007/978-1-0716-1170-8-1.]
20. Ferdous, J., Hussain, S. S., & Shi, B. J. (2015). Role of micro-RNA s in plant drought tolerance. Plant Biotechnology Journal, 13, 293-305.
https://doi.org/10.1111/pbi.12318 [
DOI:10.1111/pbi.12318.]
21. Fouracre, J. P., He, J., Chen, V. J., Sidoli, S., & Poethig, R. S. (2021). VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms. PLoS Genetics, 17, 1009626.
https://doi.org/10.1371/journal.pgen.1009626 [
DOI:10.1371/journal.pgen.1009626.]
22. Gelaw, T. A., & Sanan-Mishra, N. (2021). Non-coding RNAs in response to drought stress. International Journal of Molecular Sciences, 22, 12519.
https://doi.org/10.3390/ijms222212519 [
DOI:10.3390/ijms222212519.]
23. He, J., Xu, M., Willmann, M. R., McCormick, K., Hu, T., Yang, L., Starker, C. G., Voytas, D. F., Meyers, B. C., & Poethig, R. S. (2018). Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genetics, 14, 1007337.
https://doi.org/10.1371/journal.pgen.1007337 [
DOI:10.1371/journal.pgen.1007337.]
24. Hedil, M., & Kormelink, R. (2016). Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins. Viruses, 208, 1-24.
https://doi.org/10.3390/v8070208 [
DOI:10.3390/v8070208.]
25. Hong, S. F., Fang, R. Y., Wei, W. L., Jirawitchalert, S., Pan, Z. J., Hung, Y. L., Pham, T. H., Chiu, Y. H., Shen, T. L., Huang, C. K., & Lin, S. S. (2023). Development of an assay system for the analysis of host RISC activity in the presence of a potyvirus RNA silencing suppressor, HC-Pro. Virology Journal, 20, 1-13.
https://doi.org/10.1186/s12985-022-01956-2 [
DOI:10.1186/s12985-022-01956-2.]
26. Hou, J., Lu, D., Mason, A. S., Li, B., Xiao, M., An, S., & Fu, D. (2019). Non-coding RNAs and transposable elements in plant genomes: emergence, regulatory mechanisms and roles in plant development and stress responses. Planta, 250, 23-40.
https://doi.org/10.1007/s00425-019-03166-7 [
DOI:10.1007/s00425-019-03166-7.]
27. Hung, Y. H., & Slotkin, R. K. (2021). The initiation of RNA interference (RNAi) in plants. Current Opinion in Plant Biology, 61, 102014.
https://doi.org/10.1016/j.pbi.2021.102014 [
DOI:10.1016/j.pbi.2021.102014.]
28. Kalantidis, K., Schumacher, H. T., Alexiadis, T., & Helm, J. M. (2008). RNA silencing movement in plants. Biology of the Cell, 100, 13-26.
https://doi.org/10.1042/BC20070079 [
DOI:10.1042/BC20070079.]
29. Islam, W., Adnan, M., Alomran, M. M., Qasim, M., Waheed, A., Alshaharni, M. O., & Zeng, F. (2024). Plant responses to temperature stress modulated by microRNAs. Physiologia Plantarum, 176(1), e14126. [
DOI:10.1111/ppl.14126]
30. Kerchev, P., van der Meer, T., Sujeeth, N., Verlee, A., Stevens, C.V., Van Breusegem, F., & Gechev, T. (2020). Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnology Advances, 40, 107503.
https://doi.org/10.1016/j.biotechadv.2019.107503 [
DOI:10.1016/j.biotechadv.2019.107503.]
31. Kotowska‐Zimmer, A., Pewinska, M., & Olejniczak, M. (2021). Artificial miRNAs as therapeutic tools: challenges and opportunities. Wiley Interdisciplinary Reviews: RNA, 12, 1640-1652.
https://doi.org/10.1002/wrna.1640 [
DOI:10.1002/wrna.1640.]
32. Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Research, 47, 155-162. [
DOI:10.1093/nar/gky1141]
33. Khabiri, E., Asghari, A., Mohammadi, S., Rasolzadeh, A., & Nouraein, M. (2023). QTL mapping for some morphological traits under salt stress condition in recombinant inbred lines of bread wheat. Journal of Crop Breeding, 15(46), 104-114.
https://doi.org/10.61186/jcb.15.46.104 [
DOI:10.61186/jcb.15.46.104 [In Persian]]
34. Khalid, A., Zhang, Q., Yasir, M., & Li, F. (2017). Small RNA based genetic engineering for plant viral resistance: application in crop protection. Frontiers in microbiology, 8, 43-54.
https://doi.org/10.3389/fmicb.2017.00043 [
DOI:10.3389/fmicb.2017.00043.]
35. Kong, X., Yang, M., Le, B. H., He, W., & Hou, Y. (2022). The master role of siRNAs in plant immunity. Molecular Plant Pathology, 23, 1565-1574.
https://doi.org/10.1111/mpp.13250 [
DOI:10.1111/mpp.13250.]
36. Klesen, S., Hill, K., & Timmermans, M. C. (2020). Small RNAs as plant morphogens. Current Topics in Developmental Biology, 137, 455-480.
https://doi.org/10.1016/bs.ctdb.2019.11.001 [
DOI:10.1016/bs.ctdb.2019.11.001.]
37. Kutter, C., Schob, H., Stadler, M., Meins Jr, F., & Si-Ammour, A. (2007). microRNA-mediated regulation of stomatal development in Arabidopsis. The Plant Cell, 19, 2417-2429.
https://doi.org/10.1105/tpc.107.050377 [
DOI:10.1105/tpc.107.050377.]
38. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-854. [
DOI:10.1016/0092-8674(93)90529-Y]
39. Li, Q., Shen, H., Yuan, S., Dai, X., & Yang, C. (2023). miRNAs and lncRNAs in tomato: Roles in biotic and abiotic stress responses. Frontiers in Plant Science, 13, 1094459. [
DOI:10.3389/fpls.2022.1094459]
40. Ma, R., Liu, B., Geng, X., Ding, X., Yan, N., Sun, X., Wang, W., Sun, X., & Zheng, C. (2023). Biological function and stress response mechanism of MYB transcription factor family genes. Journal of Plant Growth Regulation, 42, 83-95.
https://doi.org/10.1007/s00344-021-10557-2 [
DOI:10.1007/s00344-021-10557-2.]
41. Millar, A. A. (2020). The function of miRNAs in plants. Plants, 9(2), 198-202.
https://doi.org/10.3390/plants9020198 [
DOI:10.3390/plants9020198.]
42. Pagano, L., Rossi, R., Paesano, L., Marmiroli, N., & Marmiroli, M. (2021). miRNA regulation and stress adaptation in plants. Environmental and Experimental Botany, 184, 104369-104382.
https://doi.org/10.1016/j.envexpbot.2020.104369 [
DOI:10.1016/j.envexpbot.2020.104369.]
43. Pareek, M., Yogindran, S., Mukherjee, S. K., & Rajam, M. V. (2015). Plant MicroRNAs: biogenesis, functions, and applications. Plant Biology and Biotechnology: Volume II: Plant Genomics and Biotechnology, 32, 639-661.
https://doi.org/10.1007/978-81-322-2283-5_32 [
DOI:10.1007/978-81-322-2283-5-32.]
44. Qiao, Y., Xia, R., Zhai, J., Hou, Y., Feng, L., Zhai, Y., & Ma, W. (2021). Small RNAs in plant immunity and virulence of filamentous pathogens. Annual Review of Phytopathology, 59, 265-288.
https://doi.org/10.1146/annurev-phyto-121520-023514 [
DOI:10.1146/annurev-phyto-121520-023514.]
45. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P. (2002). MicroRNAs in plants. Genes and Development, 16, 1616-1626.
https://doi.org/10.1101/gad.1004402 [
DOI:10.1101/gad.1004402.]
46. Salemi, M., Mogavero, M. P., Lanza, G., Mongioi, L. M., Calogero, A. E., & Ferri, R. (2022). Examples of inverse comorbidity between cancer and neurodegenerative diseases: a possible role for noncoding RNA. Cells, 11, 1930-1954.
https://doi.org/10.3390/cells11121930 [
DOI:10.3390/cells11121930.]
47. Samad, A. F. A., Sajad, M., & Ismail, I. (2020). Emerging of microRNAs as key regulators in plant secondary metabolism. Plant microRNAs: Shaping Development and Environmental Responses, 1, 121-142.
https://doi.org/10.1007/978-3-030-35772-6_7 [
DOI:10.1007/978-3-030-35772-6-7.]
48. Samynathan, R., Venkidasamy, B., Shanmugam, A., Ramalingam, S., & Thiruvengadam, M. (2023). Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants. Frontiers in Genetics, 14, 1272446.
https://doi.org/10.3389/fgene.2023.1272446 [
DOI:10.3389/fgene.2023.1272446.]
49. Sanan-Mishra, N., Abdul Kader Jailani, A., Mandal, B., & Mukherjee, S. K. (2021). Secondary siRNAs in plants: biosynthesis, various functions, and applications in virology. Frontiers in Plant Science, 12, 610283.
https://doi.org/10.3389/fpls.2021.610283 [
DOI:10.3389/fpls.2021.610283.]
50. Secic, E., Kogel, K. H., & Ladera-Carmona, M. J. (2021). Biotic stress-associated microRNA families in plants. Journal of Plant Physiology, 263, 153451.
https://doi.org/10.1016/j.jplph.2021.153451 [
DOI:10.1016/j.jplph.2021.153451.]
51. Sharma, D., Tiwari, M., Lakhwani, D., Tripathi, R. D., & Trivedi. P. K. (2015). Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics, 7, 174-187.
https://doi.org/10.1039/C4MT00264D [
DOI:10.1039/c4mt00264d.]
52. Siddiqui, Z. H., Abbas, Z. K., Ansari, M. W., & Khan, M. N. (2019). The role of miRNA in somatic embryogenesis. Genomics, 111, 1026-1033.
https://doi.org/10.1016/j.ygeno.2018.11.022 [
DOI:10.1016/j.ygeno.2018.11.022.]
53. Singroha, G., Sharma, P., & Sunkur, R. (2021). Current status of microRNA‐mediated regulation of drought stress responses in cereals. Physiologia Plantarum, 172, 1808-1821.
https://doi.org/10.1111/ppl.13451 [
DOI:10.1111/ppl.13451.]
54. Shah, S. M. S., & Ullah, F. (2021). A comprehensive overview of miRNA targeting drought stress resistance in plants. Brazilian Journal of Biology, 83, 242708.
https://doi.org/10.1590/1519-6984.242708 [
DOI:10.1590/1519-6984.242708.]
55. Somssich, M., Je, B. I., Simon, R., & Jackson, D. (2016). CLAVATA-WUSCHEL signaling in the shoot meristem. Development, 143, 3238-3248.
https://doi.org/10.1242/dev.133645 [
DOI:10.1242/dev.133645.]
56. Sun, X., Lin, L., & Sui, N. (2019). Regulation mechanism of microRNA in plant response to abiotic stress and breeding. Molecular Biology Reports, 46, 1447-1457.
https://doi.org/10.1007/s11033-018-4511-2 [
DOI:10.1007/s11033-018-4511-2.]
57. Sun, X., Wang, C., Xiang, N., Li, X., Yang, S., Du, J., Yang, Y. & Yang, Y. (2017). Activation of secondary cell wall biosynthesis by miR319‐targeted TCP 4 transcription factor. Plant Biotechnology Journal, 15, 1284-1294.
https://doi.org/10.1111/pbi.12715 [
DOI:10.1111/pbi.12715.]
58. Tan, H., Li, B., & Guo, H. (2020). The diversity of post-transcriptional gene silencing mediated by small silencing RNAs in plants. Essays in Biochemistry, 64, 919-930.
https://doi.org/10.1042/EBC20200006 [
DOI:10.1042/EBC20200006.]
59. Taylor, R. S., Tarver, J. E., Foroozani, A., & Donoghue, P. C. (2017). MicroRNA annotation of plant genomes− Do it right or not at all. BioEssays, 39, 1600113.
https://doi.org/10.1002/bies.201600113 [
DOI:10.1002/bies.201600113.]
60. Tiwari, M., Sharma, D., & Trivedi, P. K. (2014). Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Molecular Biology, 86, 1-18.
https://doi.org/10.1007/s11103-014-0224-7 [
DOI:10.1007/s11103-014-0224-7.]
61. Veit, B. (2009). Hormone mediated regulation of the shoot apical meristem. Plant Molecular Biology, 69, 397-408.
https://doi.org/10.1007/s11103-008-9396-3 [
DOI:10.1007/s11103-008-9396-3.]
62. Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). Retracted: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33, 949-956.
https://doi.org/10.1046/j.1365-313X.2003.01676.x [
DOI:10.1046/j.1365-313X.2003.01676.x.]
63. Wang, L., Gu, X., Xu, D., Wang, W., Wang, H., Zeng, M., Chang, Z., Huang, H., & Cui, X. (2011). miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. Journal of Experimental Botany, 62, 761-773.
https://doi.org/10.1093/jxb/erq307 [
DOI:10.1093/jxb/erq307.]
64. Wang, X., Li, X., Zhang, S., Korpelainen, H., & Li, C. (2016). Physiological and transcriptional responses of two contrasting Populus clones to nitrogen stress. Tree Physiology, 36, 628-642.
https://doi.org/10.1093/treephys/tpw019 [
DOI:10.1093/treephys/tpw019.]
65. Watt, L. G., Crawshaw, S., Rhee, S. J., Murphy, A. M., Canto, T., & Carr, J. P. (2020). The cucumber mosaic virus 1a protein regulates interactions between the 2b protein and ARGONAUTE 1 while maintaining the silencing suppressor activity of the 2b protein. PLoS Pathogens, 16, 1009125.
https://doi.org/10.1371/journal.ppat.1009125 [
DOI:10.1371/journal.ppat.1009125.]
66. Yang, T., Wang, Y., Teotia, S., Wang, Z., Shi, C., Sun, H., Gu, Y., Zhang, Z., & Tang, G. (2019). The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Scientific Reports, 9, 2832-2845.
https://doi.org/10.1038/s41598-019-39397-7 [
DOI:10.1038/s41598-019-39397-7.]
67. Zhan, J. & Meyers, B. C. (2023). Plant Small RNAs: Their Biogenesis, Regulatory Roles, and Functions. Annual Review of Plant Biology, 74, 21-51.
https://doi.org/10.1146/annurev-arplant-070122-035226 [
DOI:10.1146/annurev-arplant-070122-035226.]
68. Zhang, F., Yang, J., Zhang, N., Wu, J., & Si, H. (2022). Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Frontiers in Plant Science, 13, 919243-919264.
https://doi.org/10.3389/fpls.2022.919243 [
DOI:10.3389/fpls.2022.919243.]
69. Zhu, Z., Li, D., Cong, L., & Lu, X. (2021). Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in sorghum. The Crop Journal, 9, 465-475.
https://doi.org/10.1016/j.cj.2020.07.005 [
DOI:10.1016/j.cj.2020.07.005.]