1. Akita, M., Takeda, N., Hirasawa, K., Sakai, H., Kawamoto, M., Yamamoto, M., ... & Horikoshi, K. (2004). Crystallization and preliminary X-ray study of alkaline mannanase from an alkaliphilic Bacillus isolate. Biological Crystallography, 60(8), 1490-1492.
https://doi.org/10.1107/S0907444904014313 [
DOI:10.1107/S0907444904014313.]
2. Aliakbari, M., Cohen, S. P., Lindlöf, A., & Shamloo-Dashtpagerdi, R. (2021). Rubisco activase A (RcaA) is a central node in overlapping gene network of drought and salinity in Barley (Hordeum vulgare L.) and may contribute to combined stress tolerance. Plant Physiology and Biochemistry, 161, 248-258.
https://doi.org/10.1016/j.plaphy.2021.02.016 [
DOI:10.1016/j.plaphy.2021.02.016.]
3. Amini, F., Dezhsetan, S., & Rasoulzadeh, A. (2018). Evaluation the effects of water stress on some phenological, physiological and morphological traits in rainfed spring barley (Hordeum vulgare L.) Genotypes. Journal of Crop Breeding, 10(27), 160-170.
https://doi.org/10.29252/jcb.10.27.160 [
DOI:0.29252/jcb.10.27.160. [In Persian]]
4. Amini, F., Dezhsetan, S., & Sadeghzadeh, B. (2020). Evaluation of drought stress tolerance based on grain yield, grain yield components and drought tolerance indices in cold rainfed spring barley genotypes. Iranian Journal of Field Crop Science, 50(4), 137-154. [
DOI:10.22059/IJFCS.2018.248130.65442.]
5. Aroca, R. (2012). Plant responses to drought stress. From morphological to molecular features, 1-5. [
DOI:10.1007/978-3-642-32653-0]
6. Badhan, S., Ball, A. S., & Mantri, N. (2021). First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. International Journal of Molecular Sciences, 22(1), 396.
https://doi.org/10.3390/ijms22010396 [
DOI:10.3390/ijms22010396.]
7. Bekalu, Z. E., Dionisio, G., & Brinch-Pedersen, H. (2020). Molecular properties and new potentials of plant nepenthesins. Plants, 9(5), 570. [
DOI:10.3390/plants9050570]
8. Bhargava, A., Clabaugh, I., To, J. P., Maxwell, B. B., Chiang, Y. H., Schaller, G. E., ... & Kieber, J. J. (2013). Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiology, 162(1), 272-294. [
DOI:10.1104/pp.113.217026]
9. Chandran, D. (2015). Co‐option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. International :union: of Biochemistry and Molecular Biology Life, 67(7), 461-471.
https://doi.org/10.1002/iub.1394 [
DOI:10.1002/iub.1394.]
10. Chen, Q., Hu, T., Li, X., Song, C. P., Zhu, J. K., Chen, L., & Zhao, Y. (2022). Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought. Nature Plants, 8(1), 68-77. [
DOI:10.1038/s41477-021-01040-7]
11. Deng XiaoQing, D. X., Yao XiaoHua, Y. X., Wu KunLun, W. K., & Chi DeZhao, C. D. (2012). Isolation of a bit14. 2 gene encoding LTP protein of hulless barley and its expression in low temperature.
12. Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B., & Xie, F. (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 146, 1-12.
https://doi.org/10.1016/j.plaphy.2019.11.003 [
DOI:10.1016/j.plaphy.2019.11.003.]
13. Duminil, P., Davanture, M., Oury, C., Boex‐Fontvieille, E., Tcherkez, G., Zivy, M., ... & Glab, N. (2021). Arabidopsis thaliana 2, 3‐bisphosphoglycerate‐independent phosphoglycerate mutase 2 activity requires serine 82 phosphorylation. The Plant Journal, 107(5), 1478-1489. [
DOI:10.1111/tpj.15395]
14. Dunn, M. F., Ramirez-Trujillo, J. A., & Hernández-Lucas, I. (2009). Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology, 155(10), 3166-3175.
https://doi.org/10.1099/mic.0.030858-0 [
DOI:10.1099/mic.0.030858-0.]
15. Egashira, C., Hashiguchi, Y., Kurauchi, E., Tatsumi, Y., Nakagawa, A. C. S., Hamaoka, N., ... & Ishibashi, Y. (2020). A rapid translocation of photoassimilates from source organs maintains grain yield in cowpea subjected to drought stress during grain filling. Biologia Plantarum, 64(1), 529-534.
https://doi.org/10.32615/bp.2019.129 [
DOI:10.32615/bp.2019.129.]
16. Faghani, E., Gharechahi, J., Komatsu, S., Mirzaei, M., Khavarinejad, R. A., Najafi, F., ... & Salekdeh, G. H. (2015). Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. Journal of Proteomics, 114, 1-15.
https://doi.org/10.1016/j.jprot.2014.10.018 [
DOI:10.1016/j.jprot.2014.10.018.]
17. Fracasso, A., Trindade, L. M., & Amaducci, S. (2016). Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biology, 16, 1-18.
https://doi.org/10.1186/s12870-016-0800-x [
DOI:10.1186/s12870-016-0800-x.]
18. Gaillochet, C., Jamge, S., van der Wal, F., Angenent, G., Immink, R., & Lohmann, J. U. (2018). A molecular network for functional versatility of HECATE transcription factors. The Plant Journal, 95(1), 57-70.
https://doi.org/10.1111/tpj.13930 [
DOI:10.1111/tpj.13930.]
19. Górny, A. G. (2001). Variation in utilization efficiency and tolerance to reduced water and nitrogen supply among wild and cultivated barleys. Euphytica, 117, 59-66.
https://doi.org/10.1023/A:1004061709964 [
DOI:10.1023/A:1004061709964.]
20. Gou, J. Y., Sun, H. J., Wang, C. Y., & Zhang, G. L. (2020). Genomic analyses of wheat Aspartic proteinase gene family provide novel insights for wheat stress responses. SDRP Journal of Plant Science, 4(1), 174-185.
https://doi.org/10.25177/JPS.4.1.RA.10593 [
DOI:10.25177/jps.4.1.ra.10593.]
21. Hackenberg, M., Gustafson, P., Langridge, P., & Shi, B. J. (2015). Differential expression of micro RNA s and other small RNA s in barley between water and drought conditions. Plant Biotechnology Journal, 13(1), 2-13.
https://doi.org/10.1111/pbi.12220 [
DOI:10.1111/pbi.12220.]
22. He, T., & Jia, J. (2009). Cloning and function analysis of hblt14. 2 gene in highland barley (Hordeum vulgare L. var. nudum Hook. f.). Acta Agronomica Sinica, 35(2), 295-300. [
DOI:10.3724/SP.J.1006.2009.00295]
23. Huan, X., Li, L., Liu, Y., Kong, Z., Liu, Y., Wang, Q., ... & Qin, P. (2022). Integrating transcriptomics and metabolomics to analyze quinoa (Chenopodium quinoa Willd.) responses to drought stress and rewatering. Frontiers in Plant Science, 13, 988861. [
DOI:10.3389/fpls.2022.988861]
24. Hurkman, W. J., Vensel, W. H., Tanaka, C. K., Whitehand, L., & Altenbach, S. B. (2009). Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. Journal of Cereal Science, 49(1), 12-23.
https://doi.org/10.1016/j.jcs.2008.06.014 [
DOI:10.1016/j.jcs.2008.06.014.]
25. Hussain, M., Farooq, M., Sattar, A., Ijaz, M., Sher, A., & Ul-Allah, S. (2018). Mitigating the adverse effects of drought stress through seed priming and seed quality on wheat (Triticum aestivum L.) productivity. Pakistan Journal of Agricultural Sciences, 55(2). [
DOI:10.21162/PAKJAS/18.5833]
26. Kam, J., Gresshoff, P. M., Shorter, R., & Xue, G. P. (2008). The Q-type C 2 H 2 zinc finger subfamily of transcription factors in Triticum aestivum is predominantly expressed in roots and enriched with members containing an EAR repressor motif and responsive to drought stress. Plant Molecular Biology, 67, 305-322.
https://doi.org/10.1007/s11103-008-9319-3 [
DOI:10.1007/s11103-008-9319-3.]
27. Khrebtukova, I., & Spreitzer, R. J. (1996). Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Proceedings of the National Academy of Sciences, 93(24), 13689-13693.
https://doi.org/10.1073/pnas.93.24.13689 [
DOI:10.1073/pnas.93.24.13689.]
28. Krugman, T., Peleg, Z., Quansah, L., Chagué, V., Korol, A. B., Nevo, E., ... & Fahima, T. (2011). Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Functional & Integrative Genomics, 11, 565-583. [
DOI:10.1007/s10142-011-0231-6]
29. Lakhneko, O., Stasik, O., Škultéty, Ľ., Kiriziy, D., Sokolovska-Sergiienko, O., Kovalenko, M., & Danchenko, M. (2023). Transient drought during flowering modifies the grain proteome of bread winter wheat. Frontiers in Plant Science, 14, 1181834.
https://doi.org/10.3389/fpls.2023.1181834 [
DOI:10.3389/fpls.2023.1181834.]
30. Lawlor, D. W. (2002). Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Journal of Experimental Botany, 53(370), 773-787.
https://doi.org/10.1093/jexbot/53.370.773 [
DOI:10.1093/jexbot/53.370.773.]
31. Lea, P. J., & Ireland, R. J. (1999). Nitrogen metabolism in higher plants. Plant Amino Acids: Biochemistry and Biotechnology, 1.
32. Liang, J., Chen, X., Deng, G., Pan, Z., Zhang, H., Li, Q., ... & Yu, M. (2017). Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance. BMC Genomics, 18, 1-15.
https://doi.org/10.1186/s12864-017-4152-1 [
DOI:10.1186/s12864-017-4152-1.]
33. Liu, J., Liu, J., Wang, H., Khan, A., Xu, Y., Hou, Y., ... & Cai, X. (2023). Genome wide identification of GDSL gene family explores a novel GhirGDSL 26 gene enhancing drought stress tolerance in cotton. BMC Plant Biology, 23(1), 14.
https://doi.org/10.1186/s12870-022-04001-0 [
DOI:10.1186/s12870-022-04001-0.]
34. Liu, Y., Song, Q., Li, D., Yang, X., & Li, D. (2017). Multifunctional roles of plant dehydrins in response to environmental stresses. Frontiers in Plant Science, 8, 1018. [
DOI:10.3389/fpls.2017.01018]
35. Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., ... & Marchler-Bauer, A. (2020). CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265-D268.
https://doi.org/10.1093/nar/gkz991 [
DOI:10.1093/nar/gkz991.]
36. Ma, R., Yuan, H., An, J., Hao, X., & Li, H. (2018). A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis. PLoS One, 13(4), e0195556.
https://doi.org/10.1371/journal.pone.0195556 [
DOI:10.1371/journal.pone.0195556.]
37. Manickavelu, A., Kawaura, K., Oishi, K., Shin-I, T., Kohara, Y., Yahiaoui, N., ... & Ogihara, Y. (2010). Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina. DNA Research, 17(4), 211-222.
https://doi.org/10.1093/dnares/dsq009 [
DOI:10.1093/dnares/dsq009.]
38. Marques, I., Fernandes, I., Paulo, O. S., Batista, D., Lidon, F. C., Partelli, F., ... & Ramalho, J. C. (2023). Overexpression of water-responsive genes promoted by elevated CO2 reduces ROS and Enhances drought tolerance in Coffea species. International Journal of Molecular Sciences, 24(4), 3210.
https://doi.org/10.3390/ijms24043210 [
DOI:10.3390/ijms24043210.]
39. McIntosh, S., Watson, L., Bundock, P., Crawford, A., White, J., Cordeiro, G., ... & Henry, R. (2007). SAGE of the developing wheat caryopsis. Plant Biotechnology Journal, 5(1), 69-83.
https://doi.org/10.1111/j.1467-7652.2006.00218.x [
DOI:10.1111/j.1467-7652.2006.00218.x.]
40. Møller, M. G., Taylor, C., Rasmussen, S. K., & Holm, P. B. (2003). Molecular cloning and characterisation of two genes encoding asparagine synthetase in barley (Hordeum vulgare L.). Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1628(2), 123-132.
https://doi.org/10.1016/S0167-4781(03)00137-4 [
DOI:10.1016/S0167-4781(03)00137-4.]
41. Mot, A. C., & Silaghi-Dumitrescu, R. (2012). Laccases: complex architectures for one-electron oxidations. Biochemistry (Moscow), 77, 1395-1407.
https://doi.org/10.1134/S0006297912120085 [
DOI:10.1134/S0006297912120085.]
42. Nagy, Z., Németh, E., Guóth, A., Bona, L., Wodala, B., & Pécsváradi, A. (2013). Metabolic indicators of drought stress tolerance in wheat: Glutamine synthetase isoenzymes and Rubisco. Plant Physiology and Biochemistry, 67, 48-54.
https://doi.org/10.1016/j.plaphy.2013.03.001 [
DOI:10.1016/j.plaphy.2013.03.001.]
43. Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88-95. [
DOI:10.1104/pp.108.129791]
44. Paz, R. C., Rocco, R. A., Jiménez-Bremont, J. F., Rodríguez-Kessler, M., Becerra-Flora, A., Menéndez, A. B., & Ruíz, O. A. (2014). Identification of differentially expressed genes potentially involved in the tolerance of Lotus tenuis to long-term alkaline stress. Plant Physiology and Biochemistry, 82, 279-288.
https://doi.org/10.1016/j.plaphy.2014.06.009 [
DOI:10.1016/j.plaphy.2014.06.009.]
45. Pitson, S. M., Seviour, R. 8., & McDougall, B. M. (1993). Noncellulolytic fungal β-glucanases: their physiology and regulation. Enzyme and Microbial Technology, 15(3), 178-192. [
DOI:10.1016/0141-0229(93)90136-P]
46. Prinsi, B., Negri, A. S., Failla, O., Scienza, A., & Espen, L. (2018). Root proteomic and metabolic analyses reveal specific responses to drought stress in differently tolerant grapevine rootstocks. BMC plant Biology, 18, 1-28.
https://doi.org/10.1186/s12870-018-1343-0 [
DOI:10.1186/s12870-018-1343-0.]
47. Schuetz, M., Smith, R., & Ellis, B. (2013). Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany, 64(1), 11-31.
https://doi.org/10.1093/jxb/ers287 [
DOI:10.1093/jxb/ers287.]
48. Schuster, C., Gaillochet, C., & Lohmann, J. U. (2015). Arabidopsis HECATE genes function in phytohormone control during gynoecium development. Development, 142(19), 3343-3350.
https://doi.org/10.1242/dev.120444 [
DOI:10.1242/dev.120444.]
49. Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A. S., ... & Zheng, B. (2020). Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation, 39, 509-531.
https://doi.org/10.1007/s00344-019-10018-x [
DOI:10.1007/s00344-019-10018-x.]
50. Shen, G., Sun, W., Chen, Z., Shi, L., Hong, J., & Shi, J. (2022). Plant GDSL esterases/lipases: evolutionary, physiological and molecular functions in plant development. Plants, 11(4), 468.
https://doi.org/10.3390/plants11040468 [
DOI:10.3390/plants11040468.]
51. Shen, Y., Xie, J., Liu, R. D., Ni, X. F., Wang, X. H., Li, Z. X., & Zhang, M. (2014). Genomic analysis and expression investigation of caleosin gene family in Arabidopsis. Biochemical and Biophysical Research Communications, 448(4), 365-371.
https://doi.org/10.1016/j.bbrc.2014.04.115 [
DOI:10.1016/j.bbrc.2014.04.115.]
52. Shih, M. D., Hoekstra, F. A., & Hsing, Y. I. C. (2008). Late embryogenesis abundant proteins. Advances in Botanical Research, 48, 211-255.
https://doi.org/10.1016/S0065-2296(08)00404-7 [
DOI:10.1016/S0065-2296(08)00404-7.]
53. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221-227. [
DOI:10.1093/jxb/erl164]
54. Singh, A., Pandey, A., Srivastava, A. K., Tran, L. S. P., & Pandey, G. K. (2016). Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Critical Reviews in Biotechnology, 36(6), 1023-1035.
https://doi.org/10.3109/07388551.2015.1083941 [
DOI:10.3109/07388551.2015.1083941.]
55. Stewart, G. R., & Larher, F. (1980). Accumulation of amino acids and related compounds in relation to environmental stress. In Amino Acids and Derivatives (pp. 609-635). Academic Press. [
DOI:10.1016/B978-0-12-675405-6.50023-1]
56. Sugimoto, H., Kondo, S., Tanaka, T., Imamura, C., Muramoto, N., Hattori, E., ... & Ohto, C. (2014). Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth. Journal of Experimental Botany, 65(18), 5385-5400.
https://doi.org/10.1093/jxb/eru297 [
DOI:10.1093/jxb/eru297.]
57. Tian, Y. Y., Li, W., Wang, M. J., Li, J. Y., Davis, S. J., & Liu, J. X. (2022). REVEILLE 7 inhibits the expression of the circadian clock gene EARLY FLOWERING 4 to fine‐tune hypocotyl growth in response to warm temperatures. Journal of Integrative Plant Biology, 64(7), 1310-1324.
https://doi.org/10.1111/jipb.13284 [
DOI:10.1111/jipb.13284.]
58. Tripathi, P., Rabara, R. C., & Rushton, P. J. (2014). A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta, 239, 255-266.
https://doi.org/10.1007/s00425-013-1985-y [
DOI:10.1007/s00425-013-1985-y.]
59. Waheeda, K., Kitchel, H., Wang, Q., & Chiu, P. L. (2023). Molecular mechanism of Rubisco activase: Dynamic assembly and Rubisco remodeling. Frontiers in Molecular Biosciences, 10, 1125922.
https://doi.org/10.3389/fmolb.2023.1125922 [
DOI:10.3389/fmolb.2023.1125922.]
60. Wang, J., Sun, Z., Wang, X., Tang, Y., Li, X., Ren, C., ... & Yu, H. (2023). Transcriptome-based analysis of key pathways relating to yield formation stage of foxtail millet under different drought stress conditions. Frontiers in Plant Science, 13, 1110910.
https://doi.org/10.3389/fpls.2022.1110910 [
DOI:10.3389/fpls.2022.1110910.]
61. Xiao, S., Liu, L., Zhang, Y., Sun, H., Zhang, K., Bai, Z., ... & Li, C. (2020). Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). BMC Plant Biology, 20(1), 328.
https://doi.org/10.1186/s12870-020-02531-z [
DOI:10.1186/s12870-020-02531-z.]
62. Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57(1), 781-803.
https://doi.org/10.1146/annurev.arplant.57.032905.105444 [
DOI:10.1146/annurev.arplant.57.032905.105444.]
63. Yang, J., & Zhang, J. (2006). Grain filling of cereals under soil drying. New Phytologist, 169(2), 223-236.
https://doi.org/10.1111/j.1469-8137.2005.01597.x [
DOI:10.1111/j.1469-8137.2005.01597.x.]
64. Yin, H., Yang, F., He, X., Du, X., Mu, P., & Ma, W. (2022). Advances in the functional study of glutamine synthetase in plant abiotic stress tolerance response. The Crop Journal, 10(4), 917-923.
https://doi.org/10.1016/j.cj.2022.01.003 [
DOI:10.1016/j.cj.2022.01.003.]
65. Yu, A., Zhao, J., Wang, Z., Cheng, K., Zhang, P., Tian, G., ... & Wang, Y. (2020). Transcriptome and metabolite analysis reveal the drought tolerance of foxtail millet significantly correlated with phenylpropanoids-related pathways during germination process under PEG stress. BMC Plant Biology, 20, 1-17.
https://doi.org/10.1186/s12870-020-02483-4 [
DOI:10.1186/s12870-020-02483-4.]
66. Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L., Cui, K., ... & Zhang, Q. (2006). Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics, 172(2), 1213-1228.
https://doi.org/10.1534/genetics.105.045062 [
DOI:10.1534/genetics.105.045062.]
67. Zhang, S. B., Zhang, W. J., Li, N., Zhai, H. C., Lv, Y. Y., Hu, Y. S., & Cai, J. P. (2020). Functional expression and characterization of an endo-1, 4-β-mannosidase from Triticum aestivum in Pichia pastoris. Biologia, 75, 2073-2081.
https://doi.org/10.2478/s11756-020-00525-8 [
DOI:10.2478/s11756-020-00525-8.]