1. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-6. doi: 10.1016/s0076-6879(84)05016-3. [
DOI:10.1016/S0076-6879(84)05016-3]
2. Ahn, I. P., Kim, S., Lee, Y. H., & Suh, S. C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology, 143(2), 838-848. [
DOI:10.1104/pp.106.092627]
3. Altamiranda, E. A. G., Andreu, A. B., Daleo, G. R., & Olivieri, F. P. (2008). Effect of β-aminobutyric acid (BABA) on protection against Phytophthora infestans throughout the potato crop cycle. Australasian Plant Pathology, 37, 421-427. [
DOI:10.1071/AP08033]
4. Andreu, A. B., Caldiz, D. O., & Forbes, G. A. (2010). Phenotypic expression of resistance to Phytophthora infestans in processing potatoes in Argentina. American Journal of Potato Research, 87, 177-187. [
DOI:10.1007/s12230-009-9121-z]
5. Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69, 473-488. [
DOI:10.1007/s11103-008-9435-0]
6. Beckers, G. J., & Conrath, U. (2007). Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology, 10(4), 425-431. [
DOI:10.1016/j.pbi.2007.06.002]
7. Beyer Jr, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. [
DOI:10.1016/0003-2697(87)90489-1]
8. Cohen, Y., Eyal, H., & Hanania, J. (1990). Ultrastructure, autofluorescence, callose deposition and lignification in susceptible and resistant muskmelon leaves infected with the powdery mildew fungus Sphaerotheca fuliginea. Physiological and Molecular Plant Pathology, 36(3), 191-204. [
DOI:10.1016/0885-5765(90)90025-S]
9. Conrath, U., Beckers, G. J., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., ... & Mauch-Mani, B. (2006). Priming: getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062-1071. [
DOI:10.1094/MPMI-19-1062]
10. Cooke, L. R., Schepers, H. T. A. M., Hermansen, A., Bain, R. A., Bradshaw, N. J., Ritchie, F., ... & Nielsen, B. J. (2011). Epidemiology and integrated control of potato late blight in Europe. Potato Research, 54, 183-222. [
DOI:10.1007/s11540-011-9187-0]
11. Debnath, B., Irshad, M., Mitra, S., Li, M., Rizwan, H. M., Liu, S., ... & Qiu, D. (2018). Acid rain deposition modulates photosynthesis, enzymatic and non-enzymatic antioxidant activities in tomato. International Journal of Environmental Research, 12, 203-214. [
DOI:10.1007/s41742-018-0084-0]
12. Deliopoulos, T., Kettlewell, P. S., & Hare, M. C. (2010). Fungal disease suppression by inorganic salts: a review. Crop Protection, 29(10), 1059-1075. [
DOI:10.1016/j.cropro.2010.05.011]
13. Derakhshan, A., Babaeizad, V., Panjekeh, N., & Taheri, A. (2020). Study of biochemical and molecular changes of iranian rice cultivars in interaction with bacterial pathogen Xanthomonas oryzae pv. oryzae causes leaf blight disease. Journal of Crop Breeding, 12(36), 77-89. [In Persian] [
DOI:10.52547/jcb.12.36.77]
14. Eshraghi, L. E., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. S., & O'Brien, P. A. (2011). Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60(6), 1086-1095. [
DOI:10.1111/j.1365-3059.2011.02471.x]
15. Farahani, A. S., Taghavi, S. M., Afsharifar, A., & Niazi, A. (2016). Changes in expression of pathogenesis-related gene 1, pathogenesis-related gene 2, phenylalanine ammonia-lyase and catalase in tomato in response to Pectobacterium carotovorum subsp. carotovorum. Journal of Plant Pathology, 525-530.
16. Fernández-Ocaña, A., Chaki, M., Luque, F., Gómez-Rodríguez, M. V., Carreras, A., Valderrama, R., ... & Barroso, J. B. (2011). Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD. Journal of Plant Pathology, 168(11), 1303-1308. [
DOI:10.1016/j.jplph.2011.01.020]
17. Friedman, M. (1996). Food browning and its prevention: an overview. Journal of Agricultural and Food Chemistry, 44(3), 631-653. [
DOI:10.1021/jf950394r]
18. Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M., & Mauch-Mani, B. (2005). β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 18(8), 819-829. [
DOI:10.1094/MPMI-18-0819]
19. Jockusch, H. (1966). The role of host genes, temperature and polyphenoloxidase in the necrotization of TMV infected tobacco tissue. Journal of Phytopathology, 55(2), 185-192. [
DOI:10.1111/j.1439-0434.1966.tb02222.x]
20. Kavitha, R., & Umesha, S. (2008). Regulation of defense-related enzymes associated with bacterial spot resistance in tomato. Phytoparasitica, 36, 144-159. [
DOI:10.1007/BF02981327]
21. Kawasaki, T., Henmi, K., Ono, E., Hatakeyama, S., Iwano, M., Satoh, H., & Shimamoto, K. (1999). The small GTP-binding protein Rac is a regulator of cell death in plants. Proceedings of the National Academy of Sciences, 96(19), 10922-10926. [
DOI:10.1073/pnas.96.19.10922]
22. Lee, J., Bricker, T. M., Lefevre, M., Pinson, S. R., & Oard, J. H. (2006). Proteomic and genetic approaches to identifying defence‐related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. Molecular Plant Pathology, 7(5), 405-416. [
DOI:10.1111/j.1364-3703.2006.00350.x]
23. Lee, S., Lee, H. J., Jung, J. H., & Park, C. M. (2015). The A rabidopsis thaliana RNA‐binding protein FCA regulates thermotolerance by modulating the detoxification of reactive oxygen species. New Phytologist, 205(2), 555-569. [
DOI:10.1111/nph.13079]
24. Lim, S., Borza, T., Peters, R. D., Coffin, R. H., Al-Mughrabi, K. I., Pinto, D. M., & Wang-Pruski, G. (2013). Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. Journal of Proteomics, 93, 207-223. [
DOI:10.1016/j.jprot.2013.03.010]
25. Liu, H., Jiang, W., Bi, Y., & Luo, Y. (2005). Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms. Postharvest Biology and Technology, 35(3), 263-269. [
DOI:10.1016/j.postharvbio.2004.08.006]
26. Liu, Y., Yao, Y., Hu, X., Xing, S., & Xu, L. (2015). Cloning and allelic variation of two novel catalase genes (SoCAT-1 and SsCAT-1) in Saccharum officinarum L. and Saccharum spontaneum L. Biotechnology & Biotechnological Equipment, 29(3), 431-440. [
DOI:10.1080/13102818.2015.1018839]
27. Lobato, M. C., Machinandiarena, M. F., Tambascio, C., Dosio, G. A., Caldiz, D. O., Daleo, G. R., ... & Olivieri, F. P. (2011). Effect of foliar applications of phosphite on post-harvest potato tubers. European Journal of Plant Pathology, 130, 155-163. [
DOI:10.1007/s10658-011-9741-2]
28. Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., & Andreu, A. B. (2012). Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology, 169(14), 1417-1424. [
DOI:10.1016/j.jplph.2012.05.005]
29. Marshall, D. S., & Rush, M. C. (1980). Infection cushion formation on rice sheaths by Rhizoctonia solani. Phytopathology, 70(10), 947-950. [
DOI:10.1094/Phyto-70-947]
30. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. [
DOI:10.1016/S1360-1385(02)02312-9]
31. Mofidnakhaei, M., Abdossi, V., Dehestani, A., Pirdashti, H., & Babaeizad, V. (2016). Potassium phosphite affects growth, antioxidant enzymes activity and alleviates disease damage in cucumber plants inoculated with Pythium ultimum. Archives of Phytopathology and Plant Protection, 49(9-10), 207-221. [
DOI:10.1080/03235408.2016.1180924]
32. Mohammadi, M. A., Zhang, Z., Xi, Y., Han, H., Lan, F., Zhang, B., & Wang-Pruski, G. (2019). Effects of Potassium Phosphite on biochemical contents and enzymatic activities of Chinese potatoes inoculated by Phytophthora infestans. Applied Ecology & Environmental Research, 17(2). [
DOI:10.15666/aeer/1702_44994514]
33. Mohammadi, S., & Atashpanjeh, M (2022). Evaluating the Reaction of Different Species of Beans to Macrophomina phaseolina, Rhizoctonia solani and Fusarium solani In Vitro. Journal of Iranian Plant Protection Research, 36(2), 141-151. [In Persian]
34. Mondal, A., Dutta, S., Nandi, S., Das, S., & Chaudhuri, S. (2012). Changes in defence-related enzymes in rice responding to challenges by Rhizoctonia solani. Archives of Phytopathology and Plant Protection, 45(15), 1840-1851. [
DOI:10.1080/03235408.2012.712831]
35. Ngadze, E., Icishahayo, D., Coutinho, T. A., & Van der Waals, J. E. (2012). Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Disease, 96(2), 186-192. [
DOI:10.1094/PDIS-02-11-0149]
36. Nie, Q., Gao, G. L., Fan, Q. J., Qiao, G., Wen, X. P., Liu, T., ... & Cai, Y. Q. (2015). Isolation and characterization of a catalase gene "HuCAT3" from pitaya (Hylocereus undatus) and its expression under abiotic stress. Gene, 563(1), 63-71. [
DOI:10.1016/j.gene.2015.03.007]
37. Oliveira, C. M., Ferreira, A. C. S., De Freitas, V., & Silva, A. M. (2011). Oxidation mechanisms occurring in wines. Food Research International, 44(5), 1115-1126. [
DOI:10.1016/j.foodres.2011.03.050]
38. Olivieri, F. P., Feldman, M. L., Machinandiarena, M. F., Lobato, M. C., Caldiz, D. O., Daleo, G. R., & Andreu, A. B. (2012). Phosphite applications induce molecular modifications in potato tuber periderm and cortex that enhance resistance to pathogens. Crop Protection, 32, 1-6. [
DOI:10.1016/j.cropro.2011.08.025]
39. Pan, X. B., Rush, M. C., Sha, X. Y., Xie, Q. J., Linscombe, S. D., Stetina, S. R., & Oard, J. H. (1999). Major gene, nonallelic sheath blight resistance from the rice cultivars Jasmine 85 and Teqing. Crop Science, 39(2), 338-346. [
DOI:10.2135/cropsci1999.0011183X003900020006x]
40. Park, D. S., Sayler, R. J., Hong, Y. G., Nam, M. H., & Yang, Y. (2008). A method for inoculation and evaluation of rice sheath blight disease. Plant Disease, 92(1), 25-29. [
DOI:10.1094/PDIS-92-1-0025]
41. Pilbeam, R. A., Howard, K., Shearer, B. L., & Hardy, G. E. S. J. (2011). Phosphite stimulated histological responses of Eucalyptus marginata to infection by Phytophthora cinnamomi. Trees, 25, 1121-1131. [
DOI:10.1007/s00468-011-0587-1]
42. Reisi Dehkorddi, S., Radman, N., Taheri, A. H., & Sabbagh, S. K. (2022). The Effect of Sodium Silicate in Inducing Systemic Resistance in Cucumber Fusarium Stem and Root Rot. Journal of Iranian Plant Protection Research, 36(2), 169-182.
43. del Río, L. A., Corpas, F. J., López-Huertas, E., & Palma, J. M. (2018). Plant superoxide dismutases: Function under abiotic stress conditions. Antioxidants and Antioxidant Enzymes in Higher Plants, 1-26. [
DOI:10.1007/978-3-319-75088-0_1]
44. Sayari, M., Babaeizad, V., Ghanbari, M. A. T., & Rahimian, H. (2014). Expression of the pathogenesis related proteins, NH-1, PAL, and lipoxygenase in the iranian Tarom and Khazar rice cultivars, in reaction to Rhizoctonia solani-the causal agent of rice sheath blight. Journal of Plant Protection Research, 54(1). [
DOI:10.2478/jppr-2014-0006]
45. Su, Y., Guo, J., Ling, H., Chen, S., Wang, S., Xu, L., ... & Que, Y. (2014). Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One, 9(1), e84426. [
DOI:10.1371/journal.pone.0084426]
46. Zou, J. H., Pan, X. B., Chen, Z. X., Xu, J. Y., Lu, J. F., Zhai, W. X., & Zhu, L. H. (2000). Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theoretical and Applied Genetics, 101, 569-573. [
DOI:10.1007/s001220051517]