1. Abadia, J., Fernandez, A. A., Morales, F., Sanz, M., & Abadia, A. (2002). Correction of iron chlorosis by foliar sprays. Acta Hortic, 594, 115-121. [
DOI:10.17660/ActaHortic.2002.594.10]
2. Abdel Salam, M.A. (2018). Implications of applying nano-hydroxyapatite and nano-Iron on Faba Bean (Vicia Faba L.). J. Soil Sci. and Agric. Eng, 9, 543-548. [
DOI:10.21608/jssae.2018.36469]
3. Abei, H. (1984). Catalase in vitro. Methods Enzymol, 115, 121-126. [
DOI:10.1016/S0076-6879(84)05016-3]
4. Alidoust, D., & Isoda, A. (2013). Effects of Fe2O3 nanoparticles on the photosynthetic characteristic of soybean: foliar spray versus soil amendment. Acta Physiol. Plan, 35, 3365-3375. [
DOI:10.1007/s11738-013-1369-8]
5. Amiri, R., Pezeahkpour, P., & Karami, I. (2021). Identification of lentil desirable genotypes using multivariate statistical methods and selection index of ideal genotype under Rainfed conditions. Journal of Crop Breeding, 13, 140-151. [In Persian] [
DOI:10.52547/jcb.13.39.140]
6. Asli, S., & Neumann, P. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ, 32, 577-584. [
DOI:10.1111/j.1365-3040.2009.01952.x]
7. Badawy, S. A., Zayed, B. A., Bassiouni, S. M., Mahdi, A. H., Majrashi, A., Ali, E. F., & Seleiman, M. F. (2021). Influence of nano silicon and nano selenium on root characters, growth, ion selectivity, yield, and yield components of rice (Oryza sativa L.) under salinity conditions. Plants, 10(8), 1657. DOI: 10.3390/plants10081657. [
DOI:10.3390/plants10081657]
8. Behboudi, F., Tahmasebi-Sarvestani, Z., Kassaee, M. Z., Modarres-Sanavy, S. A. M., Sorooshzadeh, A., & Mokhtassi-Bidgoli, A. (2019). Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. Journal of Plant Nutrition, 42(13), 1439-1451. DOI: 10.1080/01904167.2019.1617308 [
DOI:10.1080/01904167.2019.1617308]
9. Burman, U., Saini, M., & Kumar, P. (2013). Effect of Zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol. Environ. Chem, 95, 05-612. [
DOI:10.1080/02772248.2013.803796]
10. Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance the activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 98(4), 1222-1227. [
DOI:10.1104/pp.98.4.1222]
11. Farooq, M., Wahid, A., Kobayashi, N., Fujitam, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms, and management. Agronomy for Sustainable Development, 29, 185-212. [
DOI:10.1051/agro:2008021]
12. Farooqui, A., Tabassum, H., Ahmad, A., Mabood, A., Ahmad, A., & Zareen Ahmad, I. (2016). Role of nanoparticles in growth and development of plants: a review. Int. J. Pharma Bio Sci, 7, 22-37. [
DOI:10.22376/ijpbs.2016.7.4.p22-37]
13. Varnaseri Ghandali, V., & Nasiri Dehsorkhi, A. (2017). Investigation of foliar application of Zinc and Iron elements in nano form on growth and yield of cowpea under water deficit stress. Applied Research of Plant Ecophysiology, 4(1), 109-136.
14. Gopalakrishnan, N., & Chung, I. M. (2014). Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ. Sci. pollute. Res, 21, 12709-12722. [
DOI:10.1007/s11356-014-3210-3]
15. Hamzei, J., Najjari, S., Sadeghi, F., & Seyedi, M. (2014). Effect of foliar application of nano-iron chelate and inoculation with mesorhizobium bacteria on root nodulation, growth and yield of chickpea under rainfed conditions. IJPR, 2, 9-18.
16. Hassan, M. U., Chattha, M., Ullah, A., Khan, I., Qadeer, A., Aamer, M., Khan, A.U., Nadeem, F., & Khan, T. A. (2019). Agronomic biofortification to improve productivity and grain Zn concentration of bread wheat. Int J Agric Biol, 21, 615-620.
17. Jahanaray, F., Sadeghi, S. M., & Ashouri, M. (2013) The effect nanocomposites of iron spraying on yield and yield components of wax bean genotypes inoculated with Rhizobium bacteria (Rhizobium leguminosarum) in the farm conditions of Gilan. IJPR, 2, 111-120.
18. Janmohammadi, M. (2012). Alleviation of the adverse effect of cadmium on seedling growth of greater burdock (Aractium lappa L.) through pre-sowing treatments. Int. J. Agric. For. Fish, 56, 1-13.
19. Karimi, Z., Pourakbar, L., & Feizi, H. (2014). Comparison effect of nano-iron chelate and iron chelate on growth parameters and antioxidant enzymes activity of Mung Bean. Adv. Enviro. Biol, 8(13), 16-930.
20. Kaviani, B., Negahdar, N., & Ghaziani, M. V. F. (2014). The effect of iron nano-chelate and cycocel on some morphological and physiological characteristics, proliferation, and enhancing the quality of Euphorbia pulcherrima Willd. Sci. Papers Ser. B Hortic, 58, 337-342.
21. Kumar, S. H. (2015). Current knowledge in lentil genomics and its application for crop improvement. Frontiers in Plant Science, 6, 1-13. [
DOI:10.3389/fpls.2015.00078]
22. Li, J., Hu, J., Ma, C., Wang, Y., Wu, C., Huang, J., & Xing, B. (2016). Uptake, translocation and physiological effects of magnetic iron oxide (g-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere, 15(9), 326-334. [
DOI:10.1016/j.chemosphere.2016.05.083]
23. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology, 148, 350-382. [
DOI:10.1016/0076-6879(87)48036-1]
24. Liu, Y. J., Yuan, Y., Liu, Y. Y., Liu, Y., Fu, J. J., Zheng, J., & Wang, G. Y. (2012). Gene families of maize glutathione-ascorbate redox cycle respond differently to abiotic stresses. J. Plant Physiol, 169, 83-192. [
DOI:10.1016/j.jplph.2011.08.018]
25. Loreto, F., & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol, 127, 1781-1787. [
DOI:10.1104/pp.010497]
26. Ma, D., Sun, D., Wang, C., Ding, H., Qin, H., Hou, J., Huang, X., Xie, Y., & Guo, T. (2017). Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Front. Plant Sci, 8, 860-870. [
DOI:10.3389/fpls.2017.00860]
27. Mahdieh, M., Sangi, M. R., Bamdad, F., & Ghanem, A. (2018). Effect of seed and foliar application of nano-zinc oxide, Zinc Chelate, and Zinc sulfate rates on yield and growth of pinto bean cultivars. J. Plant Nutr, DOI: 10.1080/01904167.2018.1510517. [
DOI:10.1080/01904167.2018.1510517]
28. Makarian, H., Shojaei, H., Damavandi, H., Nasiri Dehsorkhi, A., & Akhyani, A. (2017). The effect of foliar application of Zn oxide in common and nanoparticles forms on some growth and quality traits of Mungbean (Vigna radiate L.) under drought stress conditions. IJPR. 8, 166-180.
29. Maswada, H. F., Mazrou, Y. S., Elzaawely, A. A., & Alam-Eldein, S. (2020). Nanomaterials. Effective tools for field and horticultural crops to cope with drought stress: A review, Span. J. Agric. Res, 18, 1-15. [
DOI:10.5424/sjar/2020182-16181]
30. Mimmo, T., Del Buono, D., Terzano, R., Tomasi, N., Vigani, G., Crecchio, C., Pinton, R., Zocchi, G., & Cesco, S., (2014). Rhizospheric organic compounds in the soil-microorganism-plant system: their role in iron availability. Eur. J. Soil Sci, 65(5), 629-642. [
DOI:10.1111/ejss.12158]
31. Mohammadi, M., Majnoon Hosseini, N., Chaichi, M. R., Alipour, H., Dashtaki, M., & Safikhani, S. (2018). Influence of nano-iron and Zinc sulphate on physiological characteristics of peppermint. Commun Sci Plasnt Anal, 49, 2315- 2326. [
DOI:10.1080/00103624.2018.1499766]
32. Mohsenzadeh, S., & Moosavian, S. S. (2017). Zinc sulfate and nano-zinc oxide effects on some physiological parameters of Rosmarinus officialis. Am. J. of Sci, 8, 2635-2649. [
DOI:10.4236/ajps.2017.811178]
33. Nadi, E., Aynehband, A., & Mojaddam, M. (2013). Effect of nano-iron chelate fertilizer on grain yield, protein percent, and chlorophyll content of faba bean (Vicia faba. L). Int. J. Biosci, 9, 267-272. [
DOI:10.12692/ijb/3.9.267-272]
34. Ninou, E., Papathanasiou, F., Vlachostergios, D., Mylonas, I., Kargiotidou, A., Pankou, C. H., Papadopulos, I., Sinapidou, E., & Tokatlidis, I. (2019). Intense breeding within lentil landraces for high-yielding pure sustained the seed quality characteristics. Agriculture, 9, 1-13. [
DOI:10.3390/agriculture9080175]
35. Pandy, A. C., Sanjay, S. S., & Yadav, R. S. (2010). Application of ZnO nanoparticlesin influencing the growth rate of cicer arietinum. J. Exp. Nanosci. 5, 488-497. [
DOI:10.1080/17458081003649648]
36. Pawar, V. A., Ambekar, J. D., Kale, B. B., Apte, S. K., & Laware, S. L. (2019). Response in chickpea seeding growth to seed priming with iron oxide nanoparticles. Int. J. Biosci, 14, 82-91. [
DOI:10.12692/ijb/14.3.82-91]
37. Rajiput, V. D., Minkina, T., Harish, A. K., Singh, V. K., Verma, K., Mandzhieva, S., Sushkova, S., Srivastava, S., & Keswani, C. (2021). Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants, 10, 1-25. [
DOI:10.3390/plants10061221]
38. Roychoudhury, A., Basu, S., Sengupta, D. N. (2012). Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol. Plant, 34, 835-847. [
DOI:10.1007/s11738-011-0881-y]
39. Sabaghnia, N. (2014). Investigation of some morphological traits in studied lentil (Lens culinaris Medik.) genotypes grown with foliar application of nanosized ferric oxide. Pobrane z czasopisma Annales, 2, 29-39. [
DOI:10.1515/umcsbio-2015-0003]
40. Samadi, N., Yahyaabadi, S., & Rezayatmand, Z. (2014). Effect of Tio2 and Tio2 nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha piperita. Int. J. Plant Soil Sci, 3(4), 408-418. [
DOI:10.9734/IJPSS/2014/7641]
41. Sedaghatkhahi, H., Parsa, M., Nezami, A., Porsa, H., & Bagheri, A. R. (2011). Study yield and yield attributes in cold tolerant chickpea genotypes in winter sowing conditions at Mashhad. Iranian Journal of Pulses Research, 9, 322- 330.
42. Semida, W. M., Abdelkhalik, A., Mohamed, G., El-Mageed, T., Abdel-Mageed, S., Rady, M., & Ali, E. 2021. Foliar application of Zinc Oxide nanoparticles promotes drought stress tolerance in Eggplant. Plants, 10, 1-17. [
DOI:10.3390/plants10020421]
43. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology reports, 15, 11-23. DOI: 10.1016/j.btre.2017.03.002. [
DOI:10.1016/j.btre.2017.03.002]
44. Tabrizivand Taheri, M., Pouralibaba, H.R. & Kokab, S. (2024). Study Lentil (Lens Culinaris L.) landraces for cold tolerance under field and controlled conditions. J Crop Breed, 15, 213-223. [In Persian] [
DOI:10.61186/jcb.15.48.213]
45. Thounaojam, T. C., Panda, P., Choudhury, S., Patra, H. K., & Panda, S. K. (2014). Zinc ameliorates copper-induced oxidative stress in developing rice (Oryza sativa L.) seedlings. Protoplasma, 251, 61-69. [
DOI:10.1007/s00709-013-0525-8]
46. Torres, N. R., Naveda, A. F., Castro, E. D. B., Montejo, N. C., Barron, S. R., Escalante, F. B., Medina, G. N., Juarez, A, H., Alonso, C. G., Salinas, P. R., & Lopez, J. G. L. (2021). Zinc Oxide nanoparticles and Zinc Sulphate impact physiological parameters and boosts lipid peroxidation in soil grown coriander plants (Corianrdum sativum). Molecules, 26, 1-14. [
DOI:10.3390/molecules26071998]
47. Tullui, V., Janmohammadi, M., Abbasi, A., Vahdati Khaje, S., & Nouraein, M. (2021). Influence of IRON Zinc and bimetallic Zn-Fe nanoparticles on growth and biochemical characterization in chickpea cultivars. Int. j.Agric. For. Fish, 67, 179-193. [
DOI:10.17707/AgricultForest.67.2.13]
48. Umair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Ghoqin, H. (2020). The critical role of Zinc in plants facing drought stress. Agriculture, 10, 1-20. [
DOI:10.3390/agriculture10090396]
49. Unyayar, S., Keles, Y., & Cekic, F. C. (2005). The antioxidative response of two tomato species with different drought tolerances as a result of drought and cadmium stress combinations. Plant Soil Environ, 51(2), 57-64. [
DOI:10.17221/3556-PSE]
50. Wu, S., Hu, C., Tan, Q., Li, L., Shi, K., Zheng, Y., & Sun, X. (2015). Drought stress tolerance mediated by the zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium hirsutum). Acta Physiol. Plant, 37, 167-171. [
DOI:10.1007/s11738-015-1919-3]