دوره 16، شماره 1 - ( بهار 1403 )                   جلد 16 شماره 1 صفحات 45-32 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Molaei B, Bahraminejad S, Zarei L. (2024). IInvestigation of Genetic Diversity and Parameters Related to Agricultural Traits in Oat Genetic Resources. J Crop Breed. 16(1), 32-45. doi:10.61186/jcb.16.49.32
URL: http://jcb.sanru.ac.ir/article-1-1483-fa.html
مولائی بفرین، بهرامی نژاد صحبت، زارعی لیلا. بررسی تنوع و تخمین پارامترهای ژنتیکی مرتبط با صفات زراعی در ذخایر ژنتیکی یولاف پژوهشنامه اصلاح گیاهان زراعی 1403; 16 (1) :45-32 10.61186/jcb.16.49.32

URL: http://jcb.sanru.ac.ir/article-1-1483-fa.html


1- گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران
چکیده:   (887 مشاهده)
مقدمه و هدف: یولاف (Avena sp.) به عنوان یک غله دو منظوره و به دلیل دارا بودن مقادیر بالای بتا گلوکان، پروتئین، ویتامین ­ها، مواد معدنی، اسیدهای چرب و آنتی­اکسیدان­های بسیار ارزشمند، نقش بسیار مهمی را در تامین غذای انسان و خوراک دام دارد. اما در سال­های اخیر با کاهش سطح زیر کشت این غله، مطالعات اصلاحی بر روی آن کاهش یافته است. از این رو شناسایی و مطالعه منابع تنوع ژنتیکی یولاف، به منظور تولید ارقام با کیفیت بهینه­تر و دارای عملکرد دانه بالاتر در واحد سطح ضروری و ارزشمند است. هدف مطالعه حاضر، بررسی میزان تنوع ژنتیکی ژنوتیپ­های یولاف، از طریق برآورد پارامترهای ژنتیکی و تجزیه به مؤلفه ­های اصلی بود.
مواد و روش‌ها: در این تحقیق 361 ژنوتیپ یولاف از هفت گونه­ متفاوت، متعلق به 50 کشور از پنج قاره، که از بانک بذر استرالیا (AGG)[1] دریافت شده بود و در بانک بذر پردیس کشاورزی و منابع طبیعی دانشگاه رازی نگه­داری می­شد، کشت شدند. پارامترهای ژنتیکی مرتبط به صفات ارتفاع بوته، طول خوشه، روز تا 50 درصد گلدهی، روز تا رسیدگی فیزیولوژیک، عملکرد بیولوژیک، عملکرد دانه، عملکرد کاه، شاخص برداشت، وزن هزار دانه، تعداد دانه در خوشه و تعداد خوشه در متر مربع برآورد شد. آزمایش در قالب طرح لاتیس مربع ساده، در دو تکرار در شرایط نرمال آبی و در دو سال زراعی1397 و 1398، در مزرعه تحقیقاتی پردیس کشاورزی و منابع طبیعی دانشگاه رازی واقع در کرمانشاه اجرا شد.
یافته‌ها: نتایج تجزیه واریانس، بیانگر وجود اختلاف معنی­دار ژنوتیپ­ های مورد بررسی، از نظر تمام صفات اندازه­گیری شده بود که نشان دهنده وجود تنوع ژنتیکی قابل ملاحظه بین این ژنوتیپ­ها می­ باشد. بر اساس مقایسات میانگین داده­ها به روش LSD، ژنوتیپ­های (NILE)، (KENT)، (LA PREVISION)، (ZLATAK)، (SDO-185)، (OX87:080-2)، (ACACIA)، و (DUNNART) در هر دو سال بیش­ترین عملکرد دانه را داشتند. بیش­ترین عملکرد علوفه­ای در دو سال به ترتیب به ژنوتیپ­ های (LIGOWA)، (NILE)، (VENTURA)، (YULAF)، (NMO-712)، (SDO-185)، (VDO-931.1)، (SLAVUJ) و (NO.9278) اختصاص یافت. نتایج حاصل از آماره­های توصیفی نشان دهنده گستردگی دامنه تغییرات برای اکثر صفات مورد بررسی بود به­طوری که دامنه تغییرات صفت عملکرد در سال اول از 56/30 تا 789/81 و در سال دوم از 39/59 تا 617/28 گرم در مترمربع متغیر بود. بر اساس نتایج حاصل از تجزیه همبستگی صفات،  بیشترین همبستگی فنوتیپی مثبت و معنی­دار در هر دو سال، بین صفات عملکرد بیولوژیک با عملکرد کاه دیده شد. نتایج حاصل از تجزیه همبستگی ژنتیکی و فنوتیپی همچنین نشان داد که، در سال اول، صفت عملکرد دانه با همه­ی صفات به غیر از ارتفاع بوته، طول پانیکول، روز تا 50 درصد گلدهی و روز تا 50 درصد رسیدگی و در سال دوم نیز، با تمام صفات به غیر از ارتفاع بوته و عملکرد کاه همبستگی فنوتیپی معنی­دار نشان داد. بالاترین واریانس ژنتیکی، در هر دو سال مربوط به صفات وزن هزار دانه، ارتفاع بوته، روز تا 50 درصد گلدهی و تعداد پانیکول در متر مربع بود. دامنه وراثت­پذیری عمومی در سال اول از 70/06 تا 95/87 درصد به ترتیب برای صفات روز تا رسیدگی فیزیولوژیک و وزن هزار دانه و در سال دوم از 77/85 تا 94/91 درصد برای صفات عملکرد بیولوژیک و وزن هزار دانه متغیر بود. صفات عملکرد دانه، عملکرد بیولوژیک، عملکرد کاه، تعداد پانیکول در متر مربع و تعداد دانه در پانیکول دارای وراثت­ پذیری و پیشرفت ژنتیکی بالایی به طور هم­زمان بودند. بر اساس تجزیه به مؤلفه­ های اصلی، مؤلفه­ اصلی اول و دوم در سال اول 63/3 و در سال دوم 67/8 درصد تغییرات کل را را توجیه کردند.
نتیجه‌گیری: نتایج حاصل از تجزیه واریانس داده­ های حاصل از این مطالعه بیانگر وجود تنوع ژنتیکی قابل توجهی در بین ژنوتیپ­های مورد ارزیابی از نظر کلیه صفات اندازه­گیری شده بود که می­توان آن را به وجود گونه ­های مختلف با منشا جغرافیایی متفاوت نسبت داد. مقایسات میانگین داده­ها ، ژنوتیپ­های 336، 349، 356 و 360 را در هر دو سال به عنوان ژنوتیپ­های دارای بالاترین میانگین عملکرد دانه معرفی نمود. بر اساس نتایج حاصل از تجزیه به مؤلفه ­های اصلی و تجزیه همبستگی­ می­ توان گفت که صفات تعداد پانیکول در متر مربع، تعداد دانه در پانیکول، وزن هزار دانه و عملکرد بیولوژیک در برنامه­ های اصلاحی برای دستیابی به ارقام برتر حائز اهمیت هستند و ژنوتیپ­های NILE، LA PREVISION، OX87:080-2 و DUNNART از نظر صفات مذکور و عملکرد دانه برتر بودند. ارزیابی پارامترهای ژنتیکی نشان داد که انتخاب بر اساس صفات تعداد پانیکول در متر مربع، تعداد دانه در خوشه و ارتفاع بوته به دلیل وراثت­پذیری عمومی و پیشرفت ژنتیکی بالا و هم­زمان، نقش مهمی در بهبود عملکرد دانه دارند. می­توان با إتکا به نتایج حاصل از این مطالعه اقدام به تفکیک ژنوتیپ­های برتر از نظر عملکرد دانه و عملکرد علوفه نمود و آزمایشات بعدی را به تفکیک برای ژنوتیپ ­های دانه­ای و علوفه ­ای انجام داد و همچنین صفات ارزشمند در راستای دستیابی هر چه آسان­تر به این مهم در برنامه­ های اصلاحی آتی یولاف را شناسایی کرد.
 
[1]-Australian Grain Genebank
متن کامل [PDF 3385 kb]   (235 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1402/3/24 | پذیرش: 1402/9/12

فهرست منابع
1. Afzalifar, A., Zahravi, M., & Bihamta, M. (2011). Evaluation of tolerant genotypes to drought stress in Karaj region. Journal of Agronomy and Plant Breeding, 7(1), 25-44.
2. Ahmad, M., Dar, Z., & Habib, M. (2014). A review on oat (Avena sativa L.) as a dual-purpose crop. Scientific Research and Essays, 9(4), 52-59. DOI: 10.5897/SRE2014.5820 [DOI:10.5897/SRE2014.5820]
3. Al-Tabbal, J. A., & Al-Fraihat, A. H. (2012). Heritability studies of yield and yield associated traits in wheat genotypes. Journal of Agricultural Science, 4(4), 11. DOI:10.5539/jas.v4n4p11 [DOI:10.5539/jas.v4n4p11]
4. Allard, R. (1999). Principal of Plant Breeding John Wiley and Sons. Inc., USA Wiley International Edition, 85.
5. Alvarado, G., Rodríguez, F. M., Pacheco, A., Burgueño, J., Crossa, J., Vargas, M., Lopez-Cruz, M. A. (2020). META-R: A software to analyze data from multi-environment plant breeding trials. The Crop Journal, 8(5), 745-756. https://hdl.handle.net/10883/20997 [DOI:10.1016/j.cj.2020.03.010]
6. Astaraki, H., Sharifi, P., & Sheikh, F. (2020). Estimation of genotypic correlation and heritability of some of traits in faba bean genotypes using restricted maximum likelihood (REML). Plant Genetic Researches, 6(2), 111-128. DOI: 10.29252/pgr.6.2.111 [DOI:10.29252/pgr.6.2.111]
7. Bahraminejad, S., Keshvari, R., & Amiri, R. (2016). Evaluation of oat (Avena sativa L.) genotypes using drought tolerance indices. Environmental Stresses in Crop Sciences, 8(2), 259-272. [DOI:10.22077/escs.2016.237]
8. Baltenberger, D. C., & Frey, K. (1987). Genotypic variability in response of oat to delayed sowing 1. Agronomy Journal, 79(5), 813-816. [DOI:10.2134/agronj1987.00021962007900050011x]
9. Baum, B. R. (1977). Oats: wild and cultivated. A monograph of the genus Avena L.(Poaceae). Minister of Supply and Services.
10. Beikzadeh, H., Alavi Siney, S., Baya, M., & Ezady, A. (2015). Estimation of genetic parameters of effective agronomical traits on yield in some of Iranian rice cultivar. Applied Field Crops Research, 28(106), 73-78. DOI: 10.22092/AJ.2015.105678
11. Bind, H., Bharti, B., Pandey, M., Kumar, S., & Kerkhi, S. (2016). Genetic variability, heritability and genetic advance studies for different characters on green fodder yield in oat (Avena sativa L.). Agricultural Science Digest-A Research Journal, 36(2), 88-91. DOI:10.18805/asd.v36i2.10624 [DOI:10.18805/asd.v36i2.10624]
12. Buerstmayr, H., Krenn, N., Stephan, U., Grausgruber, H. & Zechner, E. (2007). Agronomic performance and quality of oat (Avena sativa L.) genotypes of worldwide origin produced under Central European growing conditions. Field Crops Research, 101(3), 343-351. [DOI:10.1016/j.fcr.2006.12.011]
13. Butt, M. S., Tahir-Nadeem, M., Khan, M. K. I., Shabir, R., & Butt, M. S. (2008). Oat: unique among the cereals. European journal of nutrition, 47, 68-79. DOI: 10.1007/s00394-008-0698-7 [DOI:10.1007/s00394-008-0698-7]
14. Chauhan, C., & Singh, S. (2019). Genetic variability, heritability and genetic advance studies in oat (Avena sativa L.). International Journal of Chemical Studies, 7(1), 992-994.
15. Chebib, J., & Guillaume, F. (2021). Pleiotropy or linkage? Their relative contributions to the genetic correlation of quantitative traits and detection by multitrait GWA studies. Genetics, 219(4), iyab159. [DOI:10.1093/genetics/iyab159]
16. Comstock, R., & Robinson, H. (1952). Genetic parameters, their estimation and significance. Proceedings of the 6th international Grassland congress,
17. Crippa, I., Bermejo, C., Espósito, M. A., Martin, E. A., Cravero, V., Liberatti, D., Cointry, E. L. (2009). Genetic variability, correlation and path analyses for agronomic traits in Lentil genotypes. International Journal of Plant Breeding, 3(2), 76-80. DOI:10.5455/faa.21740 [DOI:10.5455/faa.21740]
18. Dumlupınar, Z., Dokuyucu, T., Maral, H., Kara, R., & Akkaya, A. (2012). Evaluation of Turkish oat landraces based on morphological and phenological traits.
19. Dumlupinar, Z., Güngör, H., Dokuyucu, T., Herek, S., Tekin, A., & Akkaya, A. (2019). Agronomical screening of OGLE1040/TAM O-301 oat genetic mapping population. Sains Malaysiana, 48(5), 975-981. [DOI:10.17576/jsm-2019-4805-05]
20. Finnan, J., Burke, B., & Spink, J. (2019). The effect of nitrogen timing and rate on radiation interception, grain yield and grain quality in autumn sown oats. Field Crops Research, 231, 130-140. DOI:10.1016/j.fcr.2018.12.001 [DOI:10.1016/j.fcr.2018.12.001]
21. Gebregergs, G., & Mekbib, F. (2020). Estimation of genetic variability, heritability, and genetic advance in advanced lines for grain yield and yield components of sorghum [Sorghum bicolor (L.) Moench] at Humera, Western Tigray, Ethiopia. Cogent Food & Agriculture, 6(1), 1764181. DOI:10.1080/23311932.2020.1764181 [DOI:10.1080/23311932.2020.1764181]
22. Givens, D., Davies, T., & Laverick, R. (2004). Effect of variety, nitrogen fertiliser and various agronomic factors on the nutritive value of husked and naked oats grain. Animal feed science and technology, 113(1-4), 169-181. DOI: 10.1016/j.antifeedsci,2003.11.009 [DOI:10.1016/j.anifeedsci.2003.11.009]
23. Iannucci, A., Suriano, S., & Codianni, P. (2021). Genetic diversity for agronomic traits and phytochemical compounds in coloured naked barley lines. Plants, 10(8), 1575. [DOI:10.3390/plants10081575]
24. Jaipal, & S.S, S. (2016). Genetic variability and divergence studies in oats (Avena sativa L.) for green fodder and grain yield. Forage Research, 42(1), 51-55.
25. Johnson, H. W., Robinson, H., & Comstock, R. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47(7), 314-318. [DOI:10.2134/agronj1955.00021962004700070009x]
26. Kabiri, A., Zaefaian, F., Omrani, A., & Abassian, A. (2023). Evaluation of yield and yield components in promising wheat lines using multivariate statistical methods. Journal of Crop Breeding, 15(45), 135-148 (In Persian(. DIO: 10.52547/jcb.15.45.135
27. Kaur, R., Kapoor, R., Vikal, Y., & Kaur, K. (2018). Assessing genetic diversity in dual purpose oat (Avena sativa L.) cultivars based on morphological and quality traits. International Journal of Current Microbiology and Applied Sciences, 7(5), 1574-1586. [DOI:10.20546/ijcmas.2018.705.187]
28. Kaur, V., Aravind, J., Jacob, S. R., Kumari, J., Panwar, B. S., Pal, N., Kumar, A. (2022). Phenotypic characterization, genetic diversity assessment in 6,778 accessions of barley (Hordeum vulgare L. ssp. vulgare) germplasm conserved in National Genebank of India and development of a core set. Frontiers in plant science, 13. [DOI:10.3389/fpls.2022.771920]
29. Kaziu, I., Kashta, F., & Celami, A. (2019). Estimation of grain yield, grain components and correlations between them in some oat cultivars. Albanian Journal of Agricultural Sciences, 18(1), 13-19.
30. Kumar, S. V., & Wigge, P. A. (2010). H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 140 (1): 136-147. DOI: 10.1016/j.cell.2009.11.006 [DOI:10.1016/j.cell.2009.11.006]
31. Kumari, T., & Jindal, Y. (2019). Genetic diversity and variability analysis in oats (Avena sp) genotypes. Electronic Journal of Plant Breeding, 10(1), 1-8. DOI:10.5958/0975-928X.2019.00001.2 [DOI:10.5958/0975-928X.2019.00001.2]
32. Ladizinsky, G. (1998). A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats. Genetic Resources and Crop Evolution, 45, 263-269. [DOI:10.1023/A:1008657530466]
33. Locatelli, A. B., Federizzi, L. C., Milach, S. C., Wight, C. P., Molnar, S. J., Chapados, J. T., & Tinker, N. A. (2006). Loci affecting flowering time in oat under short-day conditions. Genome, 49(12), 1528-1538. DOI: 10.1139/g06-108 [DOI:10.1139/g06-108]
34. Mao, H., Xu, M., Ji, J., Zhou, M., Li, H., Wen, Y., Sun, B. (2022). The utilization of oat for the production of wholegrain foods: Processing technology and products. Food Frontiers, 3(1), 28-45. [DOI:10.1002/fft2.120]
35. Masood, J., Mohammad, N., Mohammad, I., Gul, J., & Fatih, H. (2019). Genetic diversity in Pakistani soybean genotypes and North American ancestral lines using agromorphological and RAPD markers. Fresenius Environmental Bulletin, 28(4), 2927-2936.
36. Mazurkievicz, G., Ubert, I. d. P., Krause, F. A., & Nava, I. C. (2019). Phenotypic variation and heritability of heading date in hexaploid oat. Crop Breeding and Applied Biotechnology, 19, 436-443. [DOI:10.1590/1984-70332019v19n4a61]
37. Musa Özcan, M., Özkan, G., & Topal, A. (2006). Characteristics of grains and oils of four different oats (Avena sativa L.) cultivars growing in Turkey. International journal of food sciences and nutrition, 57(5-6), 345-352. DOI:10.1080/09637480600802363 [DOI:10.1080/09637480600802363]
38. Oliver, R. E., Lazo, G. R., Lutz, J. D., Rubenfield, M. J., Tinker, N. A., Anderson, J. M., Maughan, P. J. (2011). Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. BMC genomics, 12(1), 1-15. [DOI:10.1186/1471-2164-12-77]
39. Peterson, D. M., Wesenberg, D. M., Burrup, D. E., & Erickson, C. A. (2005). Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Science, 45(4), 1249-1255. [DOI:10.2135/cropsci2004.0063]
40. Poonia, A., Phogat, D., Pahuja, S., Bhuker, A., & Khatri, R. (2017). Variability, character association and path coefficient analysis in fodder oat for yield and quality traits. Forage Res, 43(3), 239-243.
41. Premkumar, R., Nirmalakumari, A., & Anandakumar, C. R. (2017). Studies on Genetic Variability and Character Association among Yield and Yield Attributing Traits in Oats (Avena sativa L.). International Journal of Current Microbiology and Applied Sciences, 6, 4075-4083. https://doi.org/10.20546/ijcmas.2017.611.477 [DOI:10.20546/ijcmas.2017.611.477.DOI:https://doi.org/10.20546/ijcmas.2017.611.477]
42. Rana, M., Gupta, S., Kumar, N., Ranjan, R., Sah, R., Gajghate, R., Ahmed, S. (2019). Genetic architecture and population structure of Oat Landraces (Avena sativa L.) using molecular and morphological descriptors. Indian Journal of Traditional Knowledge (IJTK), 18(3), 439-450. DOI: 10.56042/ijtk.v18i3.26803
43. Ranjbar, M., Naghavi, M., Zali, A., & Aghaei, M. (2007). Multivariate analysis of morphological variation in accessions of Aegilops crassa from Iran. Pakistan Journal of Biological Sciences: PJBS, 10(7), 1126-1129. DOI: 10.3923/pjbs.2007.1126.1129 [DOI:10.3923/pjbs.2007.1126.1129]
44. Robinson, H., Comstock, R., & Harvey, P. (1949). Genotypic and phenotypic correlation in corn, their importance in selection. Agronomy Journal(43), 282-287. [DOI:10.2134/agronj1951.00021962004300060007x]
45. Shinde, M., Awari, V., Patil, V., Chavan, U., Dalvi, U., & Gadakh, S. (2015). CSV 30F: new high yielding single cut forage sorghum variety for kharif season. Forage Res, 41(3), 194-198. http://www.lib.ncsu.edu/resolver/1840.4/2497
46. Shrimali, J., Shekhawat, A., & Kumari, S. (2017). Genetic variation and heritability studies for yield and yield components in barley genotypes under normal and limited moisture conditions. Journal of Pharmacognosy and Phytochemistry, 6(4), 233-235. [DOI:10.20546/ijcmas.2017.608.218]
47. Singh, R. K., & Chaudhary, B. D. (1985). Biometrical Methods in Quantitative Genetics Analysis. Kalyani Publishers. https://books.google.com/books?id=QQV3twAACAAJ
48. Singhal, K., Tripathi, H., Singh, B., & Harika, A. (2008). Evaluation of dual purpose wheat varieties for grain and fodder production. Indian Journal of Animal Nutrition, 25(4), 295-301.
49. Tessema, G. L., Mohammed, A. W., & Abebe, D. T. (2022). Genetic variability studies for tuber yield and yield attributes in Ethiopian released potato (Solanum tuberosum L.) varieties. PeerJ, 10, e12860. doi: 10.7717/peerj.12860. [DOI:10.7717/peerj.12860]
50. USDAFAS. (2021). Circular Series, World Agricultural Production.
51. Wagh, V., Sonone, A., & Damame, S. (2018). Assesement of genetic variability, Correlation and path coefficient analysis in forage oat (Avena sativa L.). Forage Research, 44(3), 172-175.
52. Xu, J., Kuang, Q., Wang, K., Zhou, S., Wang, S., Liu, X., & Wang, S. (2017). Insights into molecular structure and digestion rate of oat starch. Food chemistry, 220, 25-30. DOI: 10.1016/j.foodchem.2016.09.191 [DOI:10.1016/j.foodchem.2016.09.191]
53. Yan, W., Molnar, S. J., Fregeau-Reid, J., McElroy, A., & Tinker, N. A. (2007). Associations among oat traits and their responses to the environment. Journal of Crop Improvement, 20(1-2), 1-29. DOI:10.1300/J411v20n01_01 [DOI:10.1300/J411v20n01_01]
54. Zaheer, T., M.T., Ali, S., Khan, N., Rabbani, M. A., Khan, S. A., Khan, S. M., Arif, M. (2016). Estimation of Genetic Diversity Among oat Genotypes through Agro-morphological Traits. International Journal of Bio Sciences, 9(5), 35-44. [DOI:10.12692/ijb/9.5.35-44]
55. Zhu, F. (2017). Structures, properties, modifications, and uses of oat starch. Food chemistry, 229, 329-340. DOI: 10.1016/j.foodchem.2017.02.064 [DOI:10.1016/j.foodchem.2017.02.064]
56. Zwer, P. (2017). Oats: grain-quality characteristics and management of quality requirements. In Cereal grains (pp. 235-256). Elsevier. DOI:10.1016/B978-0-08-100719-8.00010-3 [DOI:10.1016/B978-0-08-100719-8.00010-3]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb