دوره 15، شماره 48 - ( زمستان 1402 )                   جلد 15 شماره 48 صفحات 21-14 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

talebi kouyakhi S, Maleki zanjani B, Modarresi M, tarang A. (2023). Genetic and Phenotypic Screening of Different Rice Genotypes According to the Functional Marker Related to the Semi-Dwarfing Sd1 Gene. jcb. 15(48), 14-21.
URL: http://jcb.sanru.ac.ir/article-1-1481-fa.html
طالبی کویخی اسمعیل، ملکی زنجانی بهرام، مدرسی مصطفی، ترنگ علیرضا. غربالگری ژنتیکی و فنوتیپی ژنوتیپ های مختلف برنج بر اساس نشانگر عملکردی مرتبط با ژن نیمه پاکوتاهی s‌d1 پژوهشنامه اصلاح گیاهان زراعی 1402; 15 (48) :21-14

URL: http://jcb.sanru.ac.ir/article-1-1481-fa.html


گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، ایران
چکیده:   (422 مشاهده)
مقدمه و هدف: ایجاد گیاهان نیمه پاکوتاه یکی از اهداف بسیار مهم در اصلاح برنج است. کاهش کیفیت و کمیت محصول تولیدی بر اثر خوابیدگی بوته برنج ، تاثیر منفی بر اقتصاد کشاورزان می­گذارد. برای ثبات سطح زیر کشت و نیز بمنظور تامین برنج مصرفی کشور، معرفی ارقام با منشا محلی دارای صفت نیمه پاکوتاهی به همراه افزایش عملکرد توصیه می­ شود. اولین قدم برای انتقال این صفت به ارقام محلی، غربالگری برای شناسایی والدین مناسب جهت انتقال ژن نیمه‌پاکوتاهی و همچنین شناسایی نشانگرهای کارآمد برای پیشبرد پروژه‌های تلاقی‌برگشتی به کمک نشانگر است. بدین منظور این تحقیق در جهت ارزیابی فنوتیپی و غربالگری مولکولی ژنوتیپ­ های در دسترس بر اساس نشانگرهای عملکردی مرتبط با صفت نیمه پاکوتاهی اجرا گردید.
مواد و روش­ ها: در این پژوهش 50 ژنوتیپ محلی و اصـلاح شـده برنج از کلکسیون مؤسسه تحقیقات برنج کشور تهیه شده و صفت نیمه ­پاکوتاهی بر اساس ارزیابی­ های فنوتیپی در مزرعه و مولکولی مرتبط با الگوی باندی ایجاد شده یک جفت آغازگر اختصاصی  (semidwarfing gene= sd1)­­­ پیوسته با مکان ژنی کنترل کننده صفت نیمه پا­کوتاهی مورد بررسی قرار گرفت. از مدل خطی تعمیم یافته  رگرسیون لجستیک برای تحلیل همبستگی قابل مشاهده بین ژن ها ، استفاده شد. همچنین فرضیه وجود ارتباط ژنتیکی بین آلل ژن sd1 و ارتفاع بوته از طریق یک مدل رگرسیون لجستیک مورد آزمایش قرار گرفت.
یافته­ ها: براساس­ ارزیابی ژنتیکی، تعداد 26 رقم دارای آلل ژن نیمه پاکوتاهی و تعداد 24 رقم فاقد آلل این ژن شناخته شدند که نشانگر مورد استفاده ، با اطمینان و دقت بسیار بالا قادر به پیش­ بینی و متمایز کردن ارقام جهت برنامه­­ های اصلاحی آتی است. نتایج رگرسیون لجستیک نیز، این نتیجه را تایید نمود.
نتیجه‌گیری: با توجه به نتایج مشاهده شده ، نشانگر عملکردیsd1 مورد استفاده می­تواند به عنوان نشانگر کارآمد برای غربالگری جمعیت های در حال تفرق برای بهبود صفت نیمه پاکوتاهی مورد استفاده قرار گیرد.

 
متن کامل [PDF 1802 kb]   (85 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: 1402/3/14 | ویرایش نهایی: 1402/11/3 | پذیرش: 1402/7/23 | انتشار: 1402/11/3

فهرست منابع
1. Ardakani, Z., & D'Amico, S. (2020). Improving food security in Iran: quantifying post-harvest rice losses. Journal of Horticulture and Postharvest Research, 3(2), 183-194.
2. Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Datta, S., Ishiyama, K., Saito, T., Kobayashi, M., & Khush, G. S. (2002). Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice 'green revolution'. Breeding science, 52(2), 143-150. https://doi.org/10.1270/jsbbs.52.143 [DOI:https://doi.org/10.1270/jsbbs.52.143]
3. Ashikari, M., Wu, J., Yano, M., Sasaki, T., & Yoshimura, A. (1999). Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proceedings of the National Academy of Sciences, 96(18), 10284-10289. [DOI:10.1073/pnas.96.18.10284]
4. Cordeiro, G. M., Christopher, M. J., Henry, R. J., & Reinke, R. F. (2002). Identification of microsatellite markers for fragrance in rice by analysis of the rice genome sequence. Molecular Breeding, 9, 245-250. [DOI:10.1023/A:1020350725667]
5. Dehghani, M., Mosaferi, F., & Alipour, V. (2016). Heavy Metals in the Imported and Iranian Rice Consumed in Hormozgan Province. Journal of Health Sciences & Surveillance System, 4(3), 106-110.
6. Doyle, J. (1991). DNA protocols for plants. Molecular techniques in taxonomy, 283-293. [DOI:10.1007/978-3-642-83962-7_18]
7. Gupta, P., Kumar, J., Mir, R., & Kumar, A. (2010). 4 Marker-assisted selection as a component of conventional plant breeding. Plant breeding reviews, 33, 145. [DOI:10.1002/9780470535486.ch4]
8. Hu, X., Cui, Y., Dong, G., Feng, A., Wang, D., Zhao, C., Zhang, Y., Hu, J., Zeng, D., & Guo, L. (2019). Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Scientific Reports, 9(1), 19096. https://doi.org/10.1038/s41598-019-55757-9 [DOI:https://doi.org/10.1038/s41598-019-55757-9]
9. Huang, J., Li, J., Zhou, J., Wang, L., Yang, S., Hurst, L. D., Li, W.-H., & Tian, D. (2018). Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout. Proceedings of the National Academy of Sciences, 115(32), E7559-E7567. [DOI:10.1073/pnas.1806110115]
10. Ishimaru, K., Togawa, E., Ookawa, T., Kashiwagi, T., Madoka, Y., & Hirotsu, N. (2008). New target for rice lodging resistance and its effect in a typhoon. Planta, 227, 601-609. [DOI:10.1007/s00425-007-0642-8]
11. Jia, X., Yu, L., Tang, M., Tian, D., Yang, S., Zhang, X., & Traw, M. B. (2020). Pleiotropic changes revealed by in situ recovery of the semi-dwarf gene sd1 in rice. Journal of plant physiology, 248, 153141. https://doi.org/10.1016/j.jplph.2020.153141 [DOI:https://doi.org/10.1016/j.jplph.2020.153141]
12. Kage, U., Kumar, A., Dhokane, D., Karre, S., & Kushalappa, A. C. (2016). Functional molecular markers for crop improvement. Critical reviews in biotechnology, 36(5), 917-930. [DOI:10.3109/07388551.2015.1062743]
13. Kanafi Lesko Kelayeh, M., Bagheri, N., Babaeian Jelodar, N., & Ghajar Sepanlou, M. (2021). Effect of Cadmium Stress on Morphophysiological Traits of Rice Seedlings [Research]. Journal of Crop Breeding, 13(37), 11-21 (In Persian). [DOI:10.52547/jcb.13.37.11]
14. Khazaie, L. (2022). Genetic variation of some agronomic characteristics and grain quality traits of rice mutant genotypes. Journal of Crop Breeding, 77-89 (In Persian). [DOI:10.52547/jcb.14.44.77]
15. Kono, M. (1995). Physiological aspects of lodging. In K. K. Matsuo, R. Ishii, K. Ishihara, and H. Hirata (Ed.), Science of the Rice Plant, Vol. 2, Physiology 2 (pp. 971-982). Food and Agricultural Policy Research Centre.
16. Lau, W. C., Rafii, M. Y., Ismail, M. R., Puteh, A., Latif, M. A., & Ramli, A. (2015). Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Frontiers in Plant Science, 6, 832. [DOI:10.3389/fpls.2015.00832]
17. Liu, F., Wang, P., Zhang, X., Li, X., Yan, X., Fu, D., & Wu, G. (2018). The genetic and molecular basis of crop height based on a rice model. Planta, 247, 1-26. https://doi.org/10.1007/s00425-017-2798-1 [DOI:https://doi.org/10.1007/s00425-017-2798-1]
18. Mcharo, M., LaBonte, D., Mwanga, R., & Kriegner, A. (2005). Associating molecular markers with virus resistance to classify sweetpotato genotypes. Journal of the American Society for Horticultural Science, 130(3), 355-359. [DOI:10.21273/JASHS.130.3.355]
19. Mcharo, M., & LaBonte, D. R. (2010). Multivariate selection of AFLP markers associated with β-carotene in sweetpotatoes. Euphytica, 175, 123-132. [DOI:10.1007/s10681-010-0193-0]
20. McNally, K. L., Childs, K. L., Bohnert, R., Davidson, R. M., Zhao, K., Ulat, V. J., Zeller, G., Clark, R. M., Hoen, D. R., & Bureau, T. E. (2009). Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proceedings of the National Academy of Sciences, 106(30), 12273-12278. [DOI:10.1073/pnas.0900992106]
21. Modarresi, M. (2023). Rice Breeding in Iran, Current Status and Future Perspective. Plant Breeding and Biotechnology, 11(2), 97-104. [DOI:10.9787/PBB.2023.11.2.97]
22. Neeraja, C. N., Vemireddy, L. R., Malathi, S., & Siddiq, E. A. (2009). Identification of alternate dwarfing gene sources to widely used Dee-Gee-Woo-Gen allele of sd1 gene by molecular and biochemical assays in rice (Oryza sativa L.). Electronic Journal of Biotechnology, 12(3), 7-8. [DOI:10.2225/vol12-issue3-fulltext-11]
23. Nomura, T., Arakawa, N., Yamamoto, T., Ueda, T., Adachi, S., Yonemaru, J.-i., Abe, A., Takagi, H., Yokoyama, T., & Ookawa, T. (2019). Next generation long-culm rice with superior lodging resistance and high grain yield, Monster Rice 1. PLoS One, 14(8), e0221424. [DOI:10.1371/journal.pone.0221424]
24. Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H., & Matsuoka, M. (2014). New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One, 9(2), e86870. https://doi.org/10.1371/journal.pone.0086870 [DOI:https://doi.org/10.1371/journal pone.0086870]
25. Patra, B., Umakant, N., Roy, S., & Mohapatra, T. (2015). Genetic and genomic resources for grain cereals improvement. In: ICAR-NRRI.
26. Peng, J., Richards, D. E., Hartley, N. M., Murphy, G. P., Devos, K. M., Flintham, J. E., Beales, J., Fish, L. J., Worland, A. J., & Pelica, F. (1999). 'Green revolution'genes encode mutant gibberellin response modulators. Nature, 400(6741), 256-261. https://doi.org/10.1038/22307 [DOI:https://doi.org/10.1038/22307]
27. Raina, M., Salgotra, R. K., Pandotra, P., Rathour, R., & Singh, K. (2019). Genetic enhancement for semi-dwarf and bacterial blight resistance with enhanced grain quality characteristics in traditional Basmati rice through marker-assisted selection. Comptes rendus biologies, 342(5-6), 142-153. [DOI:10.1016/j.crvi.2019.04.004]
28. Rutger, J., Moldenhauer, K., Gibbons, J., Anders, M., & Bryant, R. (2004). Registration of LGRU ef early flowering mutant of rice. Crop Science, 44(4), 1498-1499. [DOI:10.2135/cropsci2004.1498]
29. Salassi, M., Linquist, B., & Tarpley, L. (2018). Proceedings of 37th Rice Technical Working Group Conference. Long Beach.
30. Salgotra, R. K., & Stewart Jr, C. N. (2020). Functional markers for precision plant breeding. International journal of molecular sciences, 21(13), 4792. https://doi.org/10.3390/ijms21134792 [DOI:https://doi:10.3390/ijms21134792]
31. Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., & Khush, G. S. (2002). A mutant gibberellin-synthesis gene in rice. Nature, 416(6882), 701-702. [DOI:10.1038/416701a]
32. Spielmeyer, W., Ellis, M. H., & Chandler, P. M. (2002). Semidwarf (sd-1),"green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences, 99(13), 9043-9048. https://doi.org/10.1073/pnas.132266399 [DOI:https://doi.org/10.1073/pnas.132266399]
33. Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10(12), 621-630. [DOI:10.1016/j.tplants.2005.10.004]
34. Wang, Y., Shang, L., Yu, H., Zeng, L., Hu, J., Ni, S., Rao, Y., Li, S., Chu, J., & Meng, X. (2020). A strigolactone biosynthesis gene contributed to the green revolution in rice. Molecular plant, 13(6), 923-932. https://doi.org/10.1016/j.molp.2020.03.009 [DOI:https://doi.org/10.1016/j.molp.2020.03.009]
35. Xie, W., Wang, G., Yuan, M., Yao, W., Lyu, K., Zhao, H., Yang, M., Li, P., Zhang, X., & Yuan, J. (2015). Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proceedings of the National Academy of Sciences, 112(39), E5411-E5419. [DOI:10.1073/pnas.1515919112]
36. Yang, Y., Zhang, H., Xuan, N., Chen, G., Liu, X., Yao, F., & Ding, H. (2017). Identification of blast resistance genes in 358 rice germplasms (Oryza sativa L.) using functional molecular markers. European Journal of Plant Pathology, 148, 567-576 [DOI:10.1007/s10658-016-1112-6]
37. Zhang, L.-P., Ge, X.-X., He, Z.-H., Wang, D.-S., Yan, J., Xia, X.-C., & Sutherland, M. W. (2005). Mapping QTLs for polyphenol oxidase activity in a DH population from common wheat. Zuowu Xuebao, 31(1), 7-10.
38. Zhang, L., Bian, Z., Ma, B., Li, X., Zou, Y., Xie, D., Liu, J., Ren, Y., Zhang, C., & Wang, J. (2020). Exploration and selection of elite Sd1 alleles for rice design breeding. Molecular Breeding, 40, 1-16. https://doi.org/10.1007/s11032-020-01161-5 [DOI:https://doi.org/10.1007/s11032-020-01161-5]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb