1. Aminian, R., Mohammadi deh cheshme, S., Houshmand, S., Khodambashi, M., & Nozad, K. (2012). Effect of stomatal characteristics on photosynthesis and yield of the bread wheat chromosomal substitution lines under normal and stress conditions. Journal of Crops Improvement, 13(2), 13-25. https://jci.ut.ac.ir/article_24410_8f614965b0f74f45624a4ced75b23178.pdf
2. Assmann, S. M., & Jegla, T. (2016). Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO(2). Curr Opin Plant Biol, 33, 157-167. [
DOI:10.1016/j.pbi.2016.07.003]
3. Atta, B. M., Mahmood, T., & Trethowan, R. (2013). Relationship between root morphology and grain yield of wheat in north-western NSW, Australia. Australian Journal of Crop Science, 7, 2108-2115.
4. Bertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Front Plant Sci, 10, 225. [
DOI:10.3389/fpls.2019.00225]
5. Bilal, M., Rashid, R., Rehman, S., Iqbal, F., Ahmed, J., Abid, M., Ahmed, Z., & Hayat, A. (2015). Evaluation of wheat genotypes for drought tolerance. J. Green Physiol. Genet. Genom, 1, 11-21.
6. Blum, A. (2011). Plant Breeding for Water Limited Environments. Springer New York, 2011. [
DOI:10.1007/978-1-4419-7491-4]
7. de Boer, H. J., Eppinga, M. B., Wassen, M. J., & Dekker, S. C. (2012). A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nature Communications, 3(1), 1221. [
DOI:10.1038/ncomms2217]
8. de Boer, H. J., Price, C. A., Wagner-Cremer, F., Dekker, S. C., Franks, P. J., & Veneklaas, E. J. (2016). Optimal allocation of leaf epidermal area for gas exchange. New Phytol, 210(4), 1219-1228. [
DOI:10.1111/nph.13929]
9. Dittberner, H., Korte, A., Mettler-Altmann, T., Weber, A. P. M., Monroe, G., & de Meaux, J. (2018). Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana. Mol Ecol, 27(20), 4052-4065. [
DOI:10.1111/mec.14838]
10. Dunn, J., Hunt, L., Afsharinafar, M., Meselmani, M. A., Mitchell, A., Howells, R., Wallington, E., Fleming, A. J., & Gray, J. E. (2019). Reduced stomatal density in bread wheat leads to increased water-use efficiency. J Exp Bot, 70(18), 4737-4748. [
DOI:10.1093/jxb/erz248]
11. Ehdaie, B., Layne, A. P., & Waines, J. G. (2012). Root system plasticity to drought influences grain yield in bread wheat. Euphytica, 186(1), 219-232. [
DOI:10.1007/s10681-011-0585-9]
12. Elsayed, S., Elhoweity, M., Ibrahim, H. H., Dewir, Y. H., Migdadi, H. M., & Schmidhalter, U. (2017). Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes. Agricultural Water Management, 189, 98-110.
https://doi.org/10.1016/j.agwat.2017.05.001 [
DOI:https://doi.org/10.1016/j.agwat.2017.05.001]
13. Enghiad, A., Ufer, D., Countryman, A., & Thilmany, D. (2017). An Overview of Global Wheat Market Fundamentals in an Era of Climate Concerns. International Journal of Agronomy, 2017, 1-15. [
DOI:10.1155/2017/3931897]
14. Fanourakis, D., Giday, H., Milla, R., Pieruschka, R., Kjaer, K. H., Bolger, M., Vasilevski, A., Nunes-Nesi, A., Fiorani, F., & Ottosen, C. O. (2015). Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides. Ann Bot, 115(4), 555-565. [
DOI:10.1093/aob/mcu247]
15. Franks, P. J., & Beerling, D. J. (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci U S A, 106(25), 10343-10347. [
DOI:10.1073/pnas.0904209106]
16. Hirose, T., Izuta, T., Miyake, H., & Totsuka, T. (1992). Participation of Air Humidity and Water Uptake Ability in the Appearance of Cyclic Changes in the Rates of Photosynthesis and Transpiration of Peanut Plants. Japanese journal of crop science, 61(4), 597-602. [
DOI:10.1626/jcs.61.597]
17. Jäger, K., Fábián, A., Eitel, G., Szabó, L., Deák, C., Barnabás, B., & Papp, I. (2014). A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress. J Plant Physiol, 171(14), 1256-1266. [
DOI:10.1016/j.jplph.2014.04.013]
18. Jongrungklang, N., Toomsan, B., Vorasoot, N., Jogloy, S., Boote, K. J., Hoogenboom, G., & Patanothai, A. (2012). Classification of root distribution patterns and their contributions to yield in peanut genotypes under mid-season drought stress. Field Crops Research, 127, 181-190.
https://doi.org/10.1016/j.fcr.2011.11.023 [
DOI:https://doi.org/10.1016/j.fcr.2011.11.023]
19. Kardiman, R., & Ræbild, A. (2017). Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. Tree Physiology, 38(5), 696-705. [
DOI:10.1093/treephys/tpx149]
20. Kolahian Hamedanizad, E., Ramshini, H., Ghaderi, M. G., & Fazel Najafabadi, M. (2015). Studying the relationship between root traits and seed yield in bread wheat (Triticum aestivum L.) under normal and terminal drought stress conditions. Environmental Stresses in Crop Sciences, 8(1), 1-11. [
DOI:10.29252/jcb.8.18.1]
21. Koocheki, A. R., Yazdansepas, A., & Mahmadyorov, U. (2013). Evaluation of physiological traits in winter and facultative bread wheat genotypes under terminal drought stress conditions. Iranian Journal of Crop Sciences, 15.
22. Manschadi, A. M., Christopher, J., Hammer, G., & DeVoil, P. (2010). Experimental and modelling studies of drought-adaptive root architectural traits in wheat (Triticum aestivum L.). Plant Biosystems, 144, 458-462. [
DOI:10.1080/11263501003731805]
23. Mohammadi, R., Armion, M., Kahrizi, D., & Amri, A. (2010). Efficiency of screening techniques for evaluating durum wheat genotypes under mild drought conditions. International Journal of Plant Production, 4, 27-39.
24. Moshfeghi, N., Khazaei, H. R., & Kafi, M. (2014). The Study of Morphological Characteristics of Old and New Barely Cultivars. Iranian Journal of Field Crops Research, 12(4), 641-648. [
DOI:10.22067/gsc.v12i4.45147]
25. Narayanan, S., Mohan, A., Gill, K. S., & Prasad, P. V. (2014). Variability of root traits in spring wheat germplasm. PLoS One, 9(6), e100317. [
DOI:10.1371/journal.pone.0100317]
26. Roche, D. (2015). Stomatal Conductance Is Essential for Higher Yield Potential of C3 Crops. Critical Reviews in Plant Sciences, 34(4), 429-453. [
DOI:10.1080/07352689.2015.1023677]
27. Saradadevi, R., Bramley, H., Palta, J. A., Edwards, E., & Siddique, K. H. M. (2015). Root biomass in the upper layer of the soil profile is related to the stomatal response of wheat as the soil dries. Funct Plant Biol, 43(1), 62-74.
https://doi.org/10.1071/FP15216 [
DOI:10.1071/fp15216]
28. Saxena, D. C., Sai Prasad, S. V., Chatrath, R., Mishra, S. C., Watt, M., Prashar, R., Wason, A., Gautam, A., & Malviya, P. (2014). Evaluation of root characteristics, canopy temperature depression and stay green trait in relation to grain yield in wheat under early and late sown conditions. Indian Journal of Plant Physiology, 19(1), 43-47. [
DOI:10.1007/s40502-014-0071-1]
29. Shahinnia, F., Le Roy, J., Laborde, B., Sznajder, B., Kalambettu, P., Mahjourimajd, S., Tilbrook, J., & Fleury, D. (2016). Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biol, 16(1), 150. [
DOI:10.1186/s12870-016-0838-9]
30. Wilkinson, S., Kudoyarova, G. R., Veselov, D. S., Arkhipova, T. N., & Davies, W. J. (2012). Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot, 63(9), 3499-3509. [
DOI:10.1093/jxb/ers148]