1. Allakonon, M. G. B., Zakari, S., Tovihoudji, P. G., Fatondji, A. S., & Akponikpè, P. I. (2022). Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis. Agricultural Water Management, 270, 107746. [
DOI:10.1016/j.agwat.2022.107746]
2. Basafa, M., & Taherian, M. (2016). Analysis of stability and adaptability of forage yield among silage corn hybrids. Journal of Crop Breeding, 8, 185-191. (In Persian)
3. Beiragi, M. A., Ebrahimi, M., Mostafavi, K., Golbashy, M., & Khorasani, S. K. (2011). A study of morphological basis of corn (Zea mays L.) yield under drought stress condition using correlation and path coefficient analysis. ـournal of Cereals and Oilseeds
5. Beyene, Y., Gowda, M., Pérez-Rodríguez, P., Olsen, M., Robbins, K. R., Burgueño, J., Prasanna, B. M., & Crossa, J. (2021). Application of genomic selection at the early stage of breeding pipeline in tropical maize. Frontiers in Plant Science, 12, 685488. [
DOI:10.3389/fpls.2021.685488]
6. Bonea, D. (2020). Grain yield and drought tolerance indices of maize hybrids. Notulae Scientia Biologicae, 12, 376-386. [
DOI:10.15835/nsb12210683]
7. Cairns, J. E., Sonder, K., Zaidi, P., Verhulst, N., Mahuku, G., Babu, R., Nair, S., Das, B., Govaerts, B., & Vinayan, M. (2012). Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Advances in Agronomy, 114, 1-58. [
DOI:10.1016/B978-0-12-394275-3.00006-7]
8. Choukan, R., Hosseinzadeh, A., Ghanadha, M., Taleei, M., & Mohammadi, S. (2005). Classification of maize inbred lines based on morphological traits. Seed and Plant Journal, 21, 139-139. [
DOI:10.22092/SPIJ.2017.110799 (In Persian)]
9. Fadhli, N., Farid, M., Effendi, R., AZRAI, M., & ANSHORI, M. F. (2020). Multivariate analysis to determine secondary characters in selecting adaptive hybrid corn lines under drought stress. Biodiversitas Journal of Biological Diversity, 21. [
DOI:10.13057/biodiv/d210826]
10. Fernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. In "Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13-16, Shanhua, Taiwan, 1992", pp. 257-270.
11. Khatibi, A., Omrani, S., Omrani, A., Shojaei, S. H., Mousavi, S. M. N., Illés, Á., Bojtor, C., & Nagy, J. (2022). Response of maize hybrids in drought-stress using drought tolerance indices. Water, 14, 1012. [
DOI:10.3390/w14071012]
12. Kumar, A., Singh, V. K., Saran, B., Al-Ansari, N., Singh, V. P., Adhikari, S., Joshi, A., Singh, N. K., & Vishwakarma, D. K. (2022). Development of novel hybrid models for prediction of drought-and stress-tolerance indices in teosinte introgressed maize lines using artificial intelligence techniques. Sustainability, 14, 2287. [
DOI:10.3390/su14042287]
13. Leonel, L. P., & Tonetti, A. L. (2021). Wastewater reuse for crop irrigation: Crop yield, soil and human health implications based on giardiasis epidemiology. Science of the Total Environment, 775, 145833. [
DOI:10.1016/j.scitotenv.2021.145833]
14. Liu, S., & Qin, F. (2021). Genetic dissection of maize drought tolerance for trait improvement. Molecular Breeding, 41, 1-13. [
DOI:10.1007/s11032-020-01194-w]
15. McMillen, M. S., Mahama, A. A., Sibiya, J., Lübberstedt, T., & Suza, W. P. (2022). Improving drought tolerance in maize: Tools and techniques. Frontiers in Genetics, 13, 1001001. [
DOI:10.3389/fgene.2022.1001001]
16. Messina, C. D., Gho, C., Hammer, G. L., Tang, T., & Cooper, M. (2023). Two decades of harnessing standing genetic variation for physiological traits to improve drought tolerance in maize. Journal of Experimental Botany, 74, 4847-4861. [
DOI:10.1093/jxb/erad231]
17. Moharramnejad, S., & Shiri, M. (2020). Study of genetic diversity in maize genotypes by ear yield and physiological traits Journal of Crop Breeding, 12, 30-40.
https://doi.org/10.52547/jcb.12.35.30 [
DOI:10.52547/jcb.12.35.30 (In Persian)]
18. Moharramnejad, S., Sofalian, O., Valizadeh, M., Asghari, A., Shiri, M. R., & Ashraf, M. (2019). Response of maize to field drought stress: oxidative defense system, osmolytes' accumulation and photosynthetic pigments. Pakistan Journal of Botany, 51, 799-807. [
DOI:10.30848/PJB2019-3(1)]
19. Osborne, S., Schepers, J. S., Francis, D., & Schlemmer, M. R. (2002). Use of spectral radiance to estimate in‐season biomass and grain yield in nitrogen‐and water‐stressed corn. Crop science, 42, 165-171. [
DOI:10.2135/cropsci2002.1650]
20. Prazeres, C. S., & Coelho, C. M. M. (2020). Osmolyte accumulation and antioxidant metabolism during germination of vigorous maize seeds subjected to water deficit. Acta Scientiarum Agronomy, 42. [
DOI:10.4025/actasciagron.v42i1.42476]
21. Sah, R., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V., Chakravarty, M., Narayan, S., Rana, M., & Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10, 2944. [
DOI:10.1038/s41598-020-59689-7]
22. Santos, Á. d. O., Pinho, R. G. V., Souza, V. F. d., Guimarães, L. J. M., Balestre, M., Pires, L. P. M., Silva, C. P. d. J. C. B., & Biotechnology, A. (2020). Grain yield, anthesis-silking interval and drought tolerance indices of tropical maize hybrids. Crop Breeding, 20, e176020110. [
DOI:10.1590/1984-70332020v20n1a10]
23. Seyedzavar, J., norouzi, M., Aharizad, S., & Moghaddam, M. (2023). Evaluation of water stress tolerance of maize hybrids using tolerance indicies Journal of Crop Breeding, 15, 105-114. [
DOI:10.52547/jcb.15.45.105 (In Persian)]
24. Shojaei, S. H., Mostafavi, K., Omrani, A., Illés, Á., Bojtor, C., Omrani, S., Mousavi, S. M. N., & Nagy, J. (2022). Comparison of maize genotypes using drought-tolerance indices and graphical analysis under normal and humidity stress conditions. Plants, 11, 942. [
DOI:10.3390/plants11070942]
25. Stepanovic, S., Rudnick, D., & Kruger, G. (2021). Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska. Agricultural Water Management, 244, 106610. [
DOI:10.1016/j.agwat.2020.106610]