دوره 15، شماره 47 - ( پاییز 1402 )                   جلد 15 شماره 47 صفحات 151-141 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahemi M R, Alishah O. (2023). Studying Yield and Yield Components of Cotton using Multivariate Statistical Methods in Three Years. J Crop Breed. 15(47), 141-151. doi:10.61186/jcb.15.47.141
URL: http://jcb.sanru.ac.ir/article-1-1462-fa.html
راحمی محمدرضا، عالیشاه عمران. مطالعه عملکرد و اجزای عملکرد پنبه (Gossypium Hirsutum) با استفاده از روش‌های آماری چند متغیره در سه سال زراعی پژوهشنامه اصلاح گیاهان زراعی 1402; 15 (47) :151-141 10.61186/jcb.15.47.141

URL: http://jcb.sanru.ac.ir/article-1-1462-fa.html


1- پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای
2- موسسه تحقیقات پنبه کشور
چکیده:   (1538 مشاهده)
چکیده مبسوط
مقدمه و هدف:
این تحقیق به­منظور ارزیابی و بررسی پایداری عملکرد و اجزای عملکرد ژنوتیپ‌­های برتر امیدبخش پنبه که از طریق روش‌­های مختلف اصلاحی شامل هیبریداسیون و موتاسیون بدست آمده­‌اند و نسبت به والدین خود برتری دارند در منطقه هاشم آباد گرگان انجام گردید.

مواد و روش‌­ها: در این آزمایش تعداد شش ژنوتیپ A-NBK، A-NB414، A-SKG، 96-A3، Va-1 وVa-2  به همراه شاهد گلستان در قالب طرح بلوک­‌های کامل تصادفی با 3 تکرار طی سال­‌های 99-1397 با استفاده از روش تجزیه مرکب، خوشه‌­ای و مولفه­‌های اصلی با استفاده از تجزیه گرافیکی ژنوتیپ در صفات، مورد بررسی قرار گرفتند.
یافته­‌ها: بر اساس نتایج حاصل از تجزیه مرکب ژنوتیپ‌­های مورد بررسی در صفات تعداد شاخه زایا و عملکرد چین اول معنی‌­دار نبودند. با وجود این صفات ارتفاع، تعداد غوزه، درصد زودرسی، عملکرد وش 30 غوزه، و عملکرد کل، عملکرد الیاف (30 غوزه)، طول الیاف، یکنواختی، ظرافت الیاف، استحکام، کشش الیاف، کیل کل و کیل 30 غوزه در سطح آماری یک درصد در بررسی ژنوتیپ­‌ها معنی‌دار بود. ژنوتیپ A-NB414 با 110/3 سانتی­متر بیشترین و رقم گلستان با 83/7 سانتی‌متر کمترین ارتفاع را داشتند. صفت عملکرد چین دوم ژنوتیپ A-NB414 با 1283/2 کیلوگرم در هکتار و صفت عملکرد کل در ژنوتیپ A-NB414 با 5067/1 کیلوگرم در هکتار به­صورت معنی­‌داری بیشتر از ژنوتیپ‌­های دیگر بود. بر اساس نتایج بدست آمده سه مولفه دارای ریشه مشخصه بالاتر از دو (7/79، 2/76 و 2/49) بودند. بر اساس نتایج حاصل از تجزیه خوشه‌­ای ژنوتیپ‌ها در 3 گروه طبقه­‌بندی شدند.
نتیجه­‌گیری: نتایج بدست آمده نشان داد که ژنوتیپ‌­های A-NBK و A-NB414 قابلیت معرفی شدن ارقام جدید و همچنین استفاده در برنامه­‌های اصلاحی برای ایجاد تنوع ژنتیکی بالاتر را دارند. می­توان از تلاقی ژنوتیپ A-NBK با رقم گلستان تنوع مطلوبی را به سبب زمینه ژنتیکی متفاوت دست یافت. ژنوتیپ Va-1 با داشتن یکنواختی الیاف بالا و عملکرد چین اول بالا به­عنوان یک ژنوتیپ زودرس ظاهر گردید. ژنوتیپ A-NB414 و A-NBK با دارا بودن ارتفاع بلند، تعداد غوزه و درصد یکنواختی الیاف و عملکرد بالا در بین ژنوتیپ­‌های مورد بررسی شرایط مطلوبی برای معرفی رقم جدید را داشتند.
متن کامل [PDF 2188 kb]   (634 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1401/12/2 | پذیرش: 1401/12/24

فهرست منابع
1. Amiri, R., Pezeshkpour, P., & Karami, I. (2021). Identification of lentil desirable genotypes using multivariate statistical methods and selection index of ideal genotype under rainfed conditions. Journal of Crop Breeding, 13(39), 140-151 (In Persian). [DOI:10.52547/jcb.13.39.140]
2. Anderson, J. V., Wittenberg, A., Li, H., & Berti, M. T. (2019). High throughput phenotyping of Camelina sativa seeds for crude protein, total oil, and fatty acids profile by near infrared spectroscopy. Industrial Crops and Products, 137, 501-507. [DOI:10.1016/j.indcrop.2019.04.075]
3. Bacenetti, J., Restuccia, A., Schillaci, G., & Failla, S. (2017). Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: environmental sustainability assessment. Renewable Energy, 112, 444-456. [DOI:10.1016/j.renene.2017.05.044]
4. Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690-710. [DOI:10.1016/j.indcrop.2016.09.034]
5. Berti, M., Wilckens, R., Fischer, S., Solis, A., & Johnson, B. (2011). Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Industrial Crops and Products, 34, 1358-1365. [DOI:10.1016/j.indcrop.2010.12.008]
6. Borzoo, S., Mohsenzadeh, S., & Kahrizi, D. (2021). Water-deficit stress and genotype variation induced alteration in seed characteristics of Camelina sativa. Rhizosphere, 20, 100427. [DOI:10.1016/j.rhisph.2021.100427]
7. Campbell, M. (2018). Camelina - An Alternative Oil Crop. In: Kaltschmitt, M., Neuling, U. (eds) Biokerosene. Springer, Berlin, Heidelberg. [DOI:10.1007/978-3-662-53065-8_12]
8. Canak, P., Jermela, A. M., Vujosevic, B., Kiprovski, B., Alberghini, B., Facciolla, E., Monti, A., & Zanetti, F. (2020). Is drought stress tolerance affected by biotypes and seed size in the emerging oilseed crop camelina? Agronomy, 10(12), 1856. [DOI:10.3390/agronomy10121856]
9. Chaturvedi, S., Bhattacharya, A., Khare, S. K., & Kaushik, G. (2019). Camelina sativa: An Emerging Biofuel Crop. In: Hussain C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-73645-7_110 [DOI:10.1007/978-3-319-73645-7-110.]
10. Chen, C., Bekkerman, A., Afshar, R. K., & Neill, K. (2015). Intensification of dryland cropping systems for bio-feedstock production: Evaluation of agronomic and economic benefits of Camelina sativa. Industrial Crops and Products, 71, 114-121. [DOI:10.1016/j.indcrop.2015.02.065]
11. Czarnik, M., Jarecki, W., & Bobrecka-Jamro, D. (2018). Reaction of winter varieties of false flax (Camelina sativa (L.) Crantz) to the varied sowing time. Journal of Central European Agriculture, 19(3), 571-586. [DOI:10.5513/JCEA01/19.3.2054]
12. Fallah, F., Kahrizi, D., Rezaeizad, A., Zebarjadi, A., & Zarei, L. (2020). Evaluation of genetic variation and parameters of fatty acid profile in doubled haploid lines of Camelina sativa L. Plant Genetic Researches, 6(2), 79-96 (In Persian). [DOI:10.29252/pgr.6.2.79]
13. Gehringer, A., Friedt, W., Lühs, W., & Snowdon, R. (2006). Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome, 49, 1555-1563. [DOI:10.1139/g06-117]
14. Gesch, R. W., Matthees, H. L., Alvarez, A. L., & Gardner, R. D. (2018). Winter camelina: crop growth, seed yield and quality response to genotype and sowing rate. Crop Science, 58, 2089-2098. [DOI:10.2135/cropsci2018.01.0018]
15. Gugel, R., & Falk, K. (2006). Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science, 86, 1047-1058. 1 [DOI:10.4141/P04-08]
16. Haghighatnia, H., & Alhani, A. (2020). Evaluation of irrigation water salinity tolerance indices in new cultivars and lines of safflower. Iranian Journal of Soil and Water Research, 51(7), 1811-1821 (In Persian).
17. Hergert, G., Margheim, J., Pavlista, A., Martin, D., Isbell, T., & Supalla, R. (2016). Irrigation response and water productivity of deficit to fully irrigated spring camelina. Agricultural Water Management, 177, 46-53. [DOI:10.1016/j.agwat.2016.06.009]
18. Hunsaker, D. J., French, A. N., & Thorp, K. R. (2013). Camelina water use and seed yield response to irrigation scheduling in an arid environment. Irrigation Science, 31, 911-929. [DOI:10.1007/s00271-012-0368-7]
19. Hunsaker, D., French, A., Clarke, T., & El-Shikha, D. (2011). Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrigation Science, 29, 27-43. [DOI:10.1007/s00271-010-0213-9]
20. Jankowski, K. J., Sokólski, M., & Kordan, B. (2019). Camelina: yield and quality response to nitrogen and sulfur fertilization in Poland. Industrial Crops and Products, 141, 111776. [DOI:10.1016/j.indcrop.2019.111776]
21. Kahrizi, D., & Rostami-Ahmadvandi, H. (2015). First report of camelina (Camelina sativa) biotechnologically breeding and cultivation in Iran. The 1st International and 9th National Biotechnology Congress of Islamic Republic of Iran. 23-25 May, 2015, Shahid Beheshti University, Tehran, Iran. [DOI:10.18869/acadpub.irjns.1.1.23]
22. Kahrizi, D., Kazemitabar, S. K., Soorni, J., Rostami-Ahmadvandi, H., Falah, F., Akbarabadi, A., Raziei, Z., & Bakhsham, M. (2016). Introducing of camelina medicinal-oil plant for dryland conditions in Iran. National Conference on the Impact of Climate Change on Plant Production. 9 Sep. 2016. Sari, Iran.
23. Kahrizi, D., Rostami-Ahmadvandi, H., & Akbarabadi, A. (2015). Feasibility Cultivation of camelina (Camelina sativa) as medicinal-oil plant in rainfed conditions in Kermanshah-Iran's first report. Journal of Medicinal Plants and By-products, 2, 215-218. [DOI:10.22092/JMPB.2015.108911]
24. Katar, D., Arslan, Y., & Subasi, I. (2012). Genotypic variations on yield, yield components and oil quality in some camelina (Camelina sativa (L.) Crantz) genotypes. Turkish Journal of Field Crops, 17(2), 105-110.
25. Krzyzaniak, M., Stolarski, M. J., Tworkowski, J., Puttick, D., Eynck, C., Załuski, D., & Kwiatkowski, J. (2019). Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of central Europe. Industrial Crops and Products, 138, 111443. [DOI:10.1016/j.indcrop.2019.06.006]
26. Lily, Z. L., Fahlgren, N., Kutchan, T., Schachtman, D., Ge, Y., Gesch, R., George, S., Dyer, J., & Abdel-Haleem, H. (2021). Discovering candidate genes related to flowering time in the spring panel of Camelina sativa. Industrial Crops and Products, 173, 114104. [DOI:10.1016/j.indcrop.2021.114104]
27. Masella, P., Martinelli, T., & Galasso, I. (2014). Agronomic evaluation and phenotypic plasticity of Camelina sativa growing in Lombardia, Italy. Crop and Pasture Science, 65(5), 453-460. [DOI:10.1071/CP14025]
28. Moghadam, M., Safari, P., & Danyali, S. F. (2012). GGE Biplot Analysis: A graphical Tool for Breeders, Geneticists and Agronomists. Parivar publication, 396 p (In Persian).
29. Morales, D., Potlakayala, S., Soliman, M., Daramola, J., Weeden, H., Jones, A., Kovak, E., Lowry, E., Patel, P., & Puthiyaparambil, J. (2017). Effect of biochemical and physiological response to salt stress in Camelina sativa. Communications in Soil Science and Plant Analysis, 48(7), 716-729. [DOI:10.1080/00103624.2016.1254237]
30. Moser, B. R. (2012). Biodiesel from alternative oilseed feedstocks: Camelina and field pennycress. Biofuels, 3(2), 193-209. [DOI:10.4155/bfs.12.6]
31. Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., & Zali, H. (2018). Stability analysis of grain yield of durum wheat promising lines in warm and dry areas using parametric and non-parametric methods. Journal of Crop Production and Processing, 8(2), 79-96 (In Persian). [DOI:10.29252/jcpp.8.2.79]
32. Obour, A. K., Obeng, E., Mohammed, Y. A., Ciampitti, I., Durrett, T. P., Aznar-moreno, J. A., & Chen, C. (2017). Camelina seed yield and fatty acids as influenced by genotype and environment. Agronomy Journal, 109(3), 947-956. [DOI:10.2134/agronj2016.05.0256]
33. Obour, A. K., Sintim, H. Y., Obeng, E., & Jeliazkov, V. D. J. (2015). Oilseed Camelina (Camelina sativa L Crantz): production systems, prospects and challenges in the USA great plains. Advances in Plants and Agriculture Research, 2(2), 68-76. [DOI:10.15406/apar.2015.02.00043]
34. Pavlista, A., Isbell, T., Baltensperger, D., & Hergert, G. (2011). Planting date and development of springseeded irrigated canola, brown mustard and Camelina. Industrial Crops and Products, 33(2), 451-456. [DOI:10.1016/j.indcrop.2010.10.029]
35. Schillinger, W. F., Wysocki, D. J., Chastain, T. G., Guy, S. O., & Karow, R. S. (2012). Camelina: planting date and method effects on stand establishment and seed yield. Field Crops Research, 130, 138-144. [DOI:10.1016/j.fcr.2012.02.019]
36. Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., de Groot, S., Soole, K., & Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Frontiers in Plant Science, 8(8), 1950. [DOI:10.3389/fpls.2017.01950]
37. Stefanoni, W., Latterini, F., Ruiz, J., Bergonzoli, S., Palmieri, N., & Pari, L. (2021). Assessing the camelina (Camelina sativa (L.) Crantz) seed harvesting using a combine harvester: a case-study on the assessment of work performance and seed loss. Sustainability, 13(1), 195. [DOI:10.3390/su13010195]
38. Tahmasebi, S., Dastfal, M., Zali, H., & Rajaie, M. (2018). Drought tolerance evaluation of bread wheat cultivars and promising lines in warm and dry climate of the south. Cereal Research, 8(2), 209-225 (In Persian).
39. Toncea, I. (2014). The seed yield potential of Camelia-first Romanian cultivar of camelina (Camelina sativa L. Crantz). Romanian Agricultural Research, 31, 17-23.
40. Veljkovic, V. B., Kostic, M. D., Stamenkovic, O. S. (2022). Camelina seed harvesting, storing, pretreating, and processing to recover oil: A review. Industrial Crops and Products, 178(2), 114539. [DOI:10.1016/j.indcrop.2022.114539]
41. Vinogradov, D. V., Mazhaisky, Y. A., Evtishina, E. V., & Lupova, E. I. (2019). Ways to increase camelina (Camelina sativa (L.) Crantz) productivity in Russia's nonchernozem zone. Russian Agricultural Sciences, 45(5), 430-433. [DOI:10.3103/S1068367419050197]
42. Vollmann, J., & Eynck, C. (2015). Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering. Biotechnology Journal, 10, 525-535. [DOI:10.1002/biot.201400200]
43. Vollmann, J., Moritz, T., Kargl, C., Baumgartner, S., & Wagentrist, H. (2007). Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Industrial Crops and Products, 26(3), 270-277. [DOI:10.1016/j.indcrop.2007.03.017]
44. Walia, M. K., Zanetti, F., Gesch, R. W., Krzyzaniak, M., Eynck, C., Puttick, D., Alexopoulou, E., Royo-Esnal, A., Stolarski, M. J., Isbell, T., & Monti, A. (2021). Winter camelina seed quality in different growing environments across Northern America and Europe. Industrial Crops and Products, 169, 113639. [DOI:10.1016/j.indcrop.2021.113639]
45. Walsh, D., Sanderson, D., Hall, L. M., Mugo, S., & Hills, M. J. (2014). Allelopathic effects of Camelina (Camelina sativa) and canola (Brassica napus) on wild oat, flax and radish. Allelopathy Journal, 33(1), 83-95.
46. Waraich, E. A., Ahmad, R., Ahmad, Z., Barutcular, C., Erman, M., Cig, F., Saneoka, H., & Ozturk, F. (2020). Comparative study of growth, physiology and yield attributes of camelina (Camelina sativa L.) and canola (Brassica napus L.) under different irrigation regimes. Pakistan Journal of Botany, 52(5), 1537-1544. [DOI:10.30848/PJB2020-5(2)]
47. Wittenberg, A., Anderson, J. V., & Berti, M. T. (2020). Crop growth and productivity of winter camelina in response to sowing date in the northwestern Corn Belt of the USA. Industrial Crops and Products, 158, 113036. [DOI:10.1016/j.indcrop.2020.113036]
48. Zali, H., & Barati, A. (2020). Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding, 12(34), 93-104 (In Persian). [DOI:10.29252/jcb.12.34.93]
49. Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., & Hoseini, S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype SIIG) technique: Introduction of new method. Biological Forum - An International Journal, 7(2), 703-711.
50. Załuski, D., Tworkowski, J., Krzyzaniak, M., Stolarski, M. J., & Kwiatkowski, J. (2020). The characterization of 10 spring camelina genotypes grown in environmental conditions in North-Eastern Poland. Agronomy, 10(1), 64. [DOI:10.3390/agronomy10010064]
51. Zanetti, F., Alberghini, B., Marjanovi'c Jeromela, A., Grahovac, N., Rajkovi'c, D., Kiprovski, B., & Monti, A. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agronomy for Sustainable Development, 41, 2. [DOI:10.1007/s13593-020-00663-y]
52. Zanetti, F., Eynck, C., Christou, M., Krzyzaniak, M., Righini, D., Alexopoulou, E., Stolarski, M. J., Van Loo, E. N., Puttick, D., & Monti, A. (2017). Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. Crantz) in multi-environment trials across Europe and Canada. Industrial Crops and Products, 107, 602-608. [DOI:10.1016/j.indcrop.2017.06.022]
53. Zanetti, F., Gesch, R. W., Walia, M. K., Johnson, J. M. F., & Monti, A. (2020). Winter camelina root characteristics and yield performance under contrasting environmental conditions. Field Crops Research, 252, 107794. [DOI:10.1016/j.fcr.2020.107794]
54. Zhang, C-J., Gao, Y., Jiang, C., Liu, L., Wang, Y., Kim, D-S., Yu, J., Yu, L., Li, F., Fan, Y., Chen, M., Zhang, Y., Min, X., Zhang, H., & Yan, X. (2021). Camelina seed yield and quality in different growing environments in northern China. Industrial Crops and Products, 172, 114071. [DOI:10.1016/j.indcrop.2021.114071]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb