دوره 15، شماره 48 - ( زمستان 1402 )                   جلد 15 شماره 48 صفحات 188-178 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

rezaian joybari N, majidian P, majidian P, ghorbani H R. (2023). Investigating the Effect of Iron Nanoparticle and Putrescine Stimulants on some Functional and Physiological Traits of Camelina (Camelina Sativa). jcb. 15(48), 178-188.
URL: http://jcb.sanru.ac.ir/article-1-1458-fa.html
رضائیان جویباری نجمه، گرامی مهیار، مجیدیان پرستو، قربانی حمید رضا. بررسی اثر محرک های نانوذره آهن و پوترسین بر برخی صفات عملکردی و فیزیولوژیکی در گیاه کاملینا (Camelina Sativa) پژوهشنامه اصلاح گیاهان زراعی 1402; 15 (48) :188-178

URL: http://jcb.sanru.ac.ir/article-1-1458-fa.html


بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، ساری، ایران
چکیده:   (388 مشاهده)
مقدمه و هدف: محرک­ها، ترکیباتی هستند که آغاز کننده پیام‌هایی برای سلول‌ها در جهت افزایش یا کاهش تولید متابولیت‌های ثانویه و پاسخ دفاعی گیاه بوده و محرک­هایی مانند پوترسین در تنظیم فرآیندهای مختلف فیزیولوژیکی گیاه نقش دارند. استفاده از نانو کودها منجر به افزایش کارایی استفاده از عناصر غذایی، مدیریت صحیح مصرف کود و کاهش تعداد دفعات کاربرد کود می­شود. این پژوهش به­منظور بررسی تاثیر نانوذره آهن و پوترسین به­ عنوان محرک­های رشد گیاهی بر عملکرد و اجزای عملکرد گیاه روغنی-دارویی کاملینا انجام شد.
مواد و روش‌ها: این پژوهش با آزمایش فاکتوریل در قالب طرح بلوک­های کامل تصادفی در سه تکرار در مزارع تحقیقاتی ایستگاه تحقیقات کشاورزی بایع­کلا در شهرستان نکا در سال 1400 انجام گرفت. فاکتورهای مورد مطالعه شامل نانوذره آهن در چهار غلظت صفر، 20، 40 و 60 ppm و پلی‌آمین پوترسین در چهار غلظت صفر، 0/5، 1 و 1/5 میلی ­مولار بود.
یافته‌ها: نتایج تجزیه واریانس صفات مختلف نشان داد اثر ساده نانوذره آهن و پوترسین بر تمام صفات مورد مطالعه در سطح احتمال 5 درصد معنی­ دار بود. همچنین اثر متقابل نانو ذره آهن و پوترسین بر تمامی صفات مورد مطالعه در مرحله زایشی به جز پراکسیداز در سطح 5 درصد معنی­ دار بوده و این برهمکنش بر تمام صفات فیزیولوژیکی در مرحله رشد رویشی معنی­ داری نبود.  بر اساس نتایج، مشاهده شد که با استفاده از40 ppm نانوذره آهن و 5/1 میلی­ مولار پوتریسین در مرحله رویشی میزان فلاونوئید (به ترتیب 21/871 و 21/389)، قند محلول (به ترتیب 116/643 و 105/453)، کاتالاز (به ترتیب 1/301 و 1/394) و پراکسیداز (به ترتیب 5/056 و 4/687) بیشترین مقدار بود. بیشترین میزان فلاونوئید (40/72)، قند محلول (139/27) و ارتفاع بوته (115/75) در ترکیب تیماری 60 ppm آهن و 1 میلی­ مولار پوترسین، بیشترین درصد روغن (41/76) و پروتئین (27/77) در ترکیب تیماری 40 ppm آهن و 1/5 میلی­ مولار پوترسین و بیشترین میزان عملکرد دانه (210/27) و اجزای مورفولوژیکی عملکرد در ترکیب تیماری 40 ppm آهن و 1 میلی ­مولار پوترسین مشاهده شد.
نتیجه‌گیری: به طور کلی اثر متقابل 40 ppm نانوذره آهن و غلظت بالای پوترسین بهترین نتایج را داشته و محلول پاشی نانوذره آهن و پوترسین از طریق جذب موثرتر عنصر غذایی کم­مصرف و تقویت سیستم دفاعی گیاه می­تواند موجب بهبود رشد، نمو و عملکرد محصول گیاه دارویی-روغنی کاملینا شود.


 
متن کامل [PDF 1882 kb]   (41 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1401/11/23 | ویرایش نهایی: 1402/11/3 | پذیرش: 1402/7/18 | انتشار: 1402/11/3

فهرست منابع
1. Akbarpour, V. (2019). The effect of putrescine and salicylic acid on physiological characteristics and antioxidant in Stevia rebaudiana B. under salinity stress. Journal of Crop Breeding, 11(29), 40-54. [DOI:10.29252/jcb.11.29.40]
2. Akk, E., & Ilumäe, E. (2005). Possibilities of growing Camelina sativa in ecological cultivation. Estonian Res Institute Agric, 1, 28-33.
3. Alcázar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A. F., & Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology letters, 28, 1867-1876. [DOI:10.1007/s10529-006-9179-3]
4. Amraee Tabar, S., Ershadi, A., & Robati, T. (2016). The effect of putrescine and spermine on drought tolerance of almond and peach. Journal of Crops Improvement, 18(1), 203-218.
5. Ansari, A., Andalibi, B., Zarei, M., & Shekari, F. (2021). Effect of putrescine foliar application on growth and tolerance of iberica dragon's head (Lallemantia iberica) to lead stress. Environmental Stresses in Crop Sciences, 14(3), 861-871.
6. AOAC, A. (1970). Official Methods of analysis. th ed. Association of Official Analytical Chemists, Washington, DC, EUA, 997.
7. AZAD, H., FAKHERI, B. A., & PARMOON, G. (2018). The study the efficacy of drought stress and foliar application of nano iron chelated on antioxidant enzymes activity and yield flower in plant in chamomile genotypes (Matricaria Chamomilla L.).
8. Babhulkar, P., Kar, D., Badole, W., & Balpande, S. (2000). Effect of sulphur and zinc on yield, quality and nutrient uptake by safflower in Vertisol. Journal of the Indian Society of soil Science, 48(3), 541-543.
9. Barghi, A., Gholipoori, A., Tobeh, A., Jahanbakhsh, S., & JAMAATI, E. S. S. (2014). Survey on the effects of iron nano oxide foliar application on mineral nutrients uptake in potato tuber.
10. Bourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolites: a historical perspective. Plant science, 161(5), 839-851. [DOI:10.1016/S0168-9452(01)00490-3]
11. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. [DOI:10.1016/0003-2697(76)90527-3]
12. Briat, J.-F., Curie, C., & Gaymard, F. (2007). Iron utilization and metabolism in plants. Current opinion in plant biology, 10(3), 276-282. [DOI:10.1016/j.pbi.2007.04.003]
13. Bromand Sivieri, M., Heydari, M., Gholami, A., & Ghorbani, H. (2020). Effects of biofertilizers and foliar application of iron oxide nanoparticle on grain yield and some physiological characteristics of black cumin (Nigella sativa L.). Iranian Journal of Field Crop Science, 51(4), 73-83.
14. Cohen, A. S., Popovic, R. B., & Zalik, S. (1979). Effects of polyamines on chlorophyll and protein content, photochemical activity, and chloroplast ultrastructure of barley leaf discs during senescence. Plant Physiology, 64(5), 717-720. [DOI:10.1104/pp.64.5.717]
15. Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557-562. [DOI:10.1016/j.foodchem.2008.08.025]
16. Fornazier, R. F., Ferreira, R. R., Pereira, G. J., Molina, S. M., Smith, R. J., Lea, P. J., & Azevedo, R. A. (2002). Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell, Tissue and Organ Culture, 71, 125-131. [DOI:10.1023/A:1019917705111]
17. Gill, S. S., & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant signaling & behavior, 5(1), 26-33. [DOI:10.4161/psb.5.1.10291]
18. Hassanpour, N. F., & Ranjber, M. (2019). Effect of lead and putresine interactions on cress (Lipidium sativum) seedling physiological and biochemical factors.
19. Ibrahim, F. M., & El Habbasha, S. (2015). Chemical composition, medicinal impacts and cultivation of camelina (Camelina sativa). International Journal of Pharm Tech Research, 8, 114-122.
20. Jafarpour, F., Bakhshi, D., GH, M., & Hassan Sajedi, R. (2014). Effect of putrescine on postharvest quality, and phenolic compounds and antioxidant capacity of Broccoli (Brassica oleracea L. cv. Italica) florets. Journal Of Horticultural Science, 28(3), 303-311.
21. Jones, R. A., Sharman, M., Trębicki, P., Maina, S., & Congdon, B. S. (2021). Virus diseases of cereal and oilseed crops in Australia: current position and future challenges. Viruses, 13(10), 2051. [DOI:10.3390/v13102051]
22. Kandil, M., El-Saady, M., Mona, H., Afaf, M., & Iman, M. (2011). Effect of putrescine and uniconazole treatments on flower characters and photosynthetic pigments of Chrysanthemum indicum L. plant. The Journal of American Science, 7(3), 399-408.
23. Liu, J.-H., Wang, W., Wu, H., Gong, X., & Moriguchi, T. (2015). Polyamines function in stress tolerance: from synthesis to regulation. Frontiers in plant science, 6, 827. [DOI:10.3389/fpls.2015.00827]
24. Malakoti, M., & Tehrani, M. (1999). Effects of micronutrients on the yield and quality of agricultural products. Tarbiat Modarres University Publications, 22, 292-294.
25. Mazid, M., Khan, T., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and medicine, 3(2), 232-249.
26. McCready, R., Guggolz, J., Silviera, V., & Owens, H. (1950). Determination of starch and amylose in vegetables. Analytical chemistry, 22(9), 1156-1158. [DOI:10.1021/ac60045a016]
27. Michal, G., & Bergmeyer, H. U. (1974). Coenzyme A. In Methods of enzymatic analysis (pp. 1967-1987). Elsevier. [DOI:10.1016/B978-0-12-091304-6.50058-6]
28. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. [DOI:10.1016/S1360-1385(02)02312-9]
29. Mohammadi, M., Hosseini, N., & Dashtaki, M. (2016). Effects of nano-ferric oxide and zinc sulfate on chlorophyll, anthocyanin, flavonoid and leaf mineral elements of peppermint (Mentha piperita L.) at Karaj climatic conditions. Iranian Journal of Medicinal and Aromatic Plants, 32(5).
30. Mohammadrezakhani, S., Hajilou, J., & Rezanejad, F. (2018). Effect of foliar spray with putrescine and proline on some physiological characteristics of peel and pulp of two citrus species in response to low temperature stress. Research in Pomology, 3(1), 1-12.
31. Mulabagal, V., & Tsay, H.-S. (2004). Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. International journal of applied science and engineering, 2(1), 29-48.
32. Mustafavi, S. H., Naghdi Badi, H., Sękara, A., Mehrafarin, A., Janda, T., Ghorbanpour, M., & Rafiee, H. (2018). Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiologiae Plantarum, 40, 1-19. [DOI:10.1007/s11738-018-2671-2]
33. Reis, R. S., de Moura Vale, E., Heringer, A. S., Santa-Catarina, C., & Silveira, V. (2016). Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. Journal of proteomics, 130, 170-179. [DOI:10.1016/j.jprot.2015.09.029]
34. Ruiz, J. M., Baghour, M., & Romero, L. (2000). Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. Journal of Plant Nutrition, 23(11-12), 1777-1786. [DOI:10.1080/01904160009382141]
35. Seyed Sharifi, R., & Narimani, H. (2021). Effect of biofertilizers and putrescine on biomass and some physiological and biochemical traits of vetch (Vicia villosa Roth) under rainfed condition. Iranian Journal of Plant Biology, 13(3), 1-20.
36. Sinha, S., & Saxena, R. (2006). Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere, 62(8), 1340-1350. [DOI:10.1016/j.chemosphere.2005.07.030]
37. Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in biotechnology, 27(2), 82-89. [DOI:10.1016/j.tibtech.2008.10.010]
38. Srivastava, N., Srivastava, M., Manikanta, A., Singh, P., Ramteke, P., Mishra, P., & Malhotra, B. D. (2017). Production and optimization of physicochemical parameters of cellulase using untreated orange waste by newly isolated Emericella variecolor NS3. Applied biochemistry and biotechnology, 183, 601-612. [DOI:10.1007/s12010-017-2561-x]
39. Tang, W., & Newton, R. J. (2005). Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 46, 31-43. [DOI:10.1007/s10725-005-6395-0]
40. Torabian, S., & Zahedi, M. (2013). Effects of foliar application of common and nano-sized of iron sulphate on the growth of sunflower cultivars under salinity. Iranian Journal of Field Crop Science, 44(1), 109-118.
41. Vanacker, S. A., Tromp, M. N., Haenen, G. R., Vandervijgh, W., & Bast, A. (1995). Flavonoids as scavengers of nitric oxide radical. Biochemical and biophysical research communications, 214(3), 755-759. [DOI:10.1006/bbrc.1995.2350]
42. Verma, S., & Mishra, S. N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of plant physiology, 162(6), 669-677. [DOI:10.1016/j.jplph.2004.08.008]
43. Waraich, E. A., Ahmed, Z., Ahmad, R., Ashraf, M. Y., Naeem, M. S., & Rengel, Z. (2013). 'Camelina sativa', a climate proof crop, has high nutritive value and multiple-uses: A review. Australian Journal of Crop Science, 7(10), 1551-1559.
44. Wink, M. (2010). Annual plant reviews, functions and biotechnology of plant secondary metabolites. John Wiley & Sons. [DOI:10.1002/9781444318876]
45. Zahedi, H., & Alipour, A. (2018). Effect of spraying of iron and manganese nano chelated on yield and yield component of barley (Hordeum vulgare L.) under water deficit stress at different growth stages. Environmental Stresses in Crop Sciences, 11(4), 847-861.
46. Zayed, B., Salem, A., & El Sharkawy, H. (2011). Effect of different micronutrient treatments on rice (Oriza sativa L.) growth and yield under saline soil conditions. World Journal of Agricultural Sciences. 7(2),179-184.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb