دوره 15، شماره 46 - ( تابستان 1402 )                   جلد 15 شماره 46 صفحات 92-84 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hasanzadeh P, fotovat R, yousefi A, jafari H. (2023). Competitive and Allelopathic Effects Between Barley Doubled-haploid Lines and Rye (Secale cereale L.) Under Field Conditions. jcb. 15(46), 84-92. doi:10.61186/jcb.15.46.84
URL: http://jcb.sanru.ac.ir/article-1-1422-fa.html
حسن زاده پروانه، فتوت رضا، یوسفی علیرضا، جعفری حسین. بررسی اثرات آللوپاتی و رقابتی لاین های هاپلوئید مضاعف جو و چاودار در شرایط مزرعه پژوهشنامه اصلاح گیاهان زراعی 1402; 15 (46) :92-84 10.61186/jcb.15.46.84

URL: http://jcb.sanru.ac.ir/article-1-1422-fa.html


گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، ایران
چکیده:   (613 مشاهده)
چکیده مبسوط
مقدمه و هدف: شناخت آللوپاتی در گیاهان زراعی به­ منظور اصلاح و افزایش عملکرد، حفظ تنوع گونه ­ای، مدیریت گیاهان و حفاظت از محیط­ زیست لازم و ضروری است. با وجود مطالعات انجام گرفته درباره آللوپاتی گیاهان، توسعه و معرفی ارقام زراعی با توان آللوپاتی بالا تا حدود زیادی بعلت کمبود اطلاعات در مورد ژنتیک آن محدود است.
مواد و روش‌ها: برای بررسی اثر آللوپاتی لاین‌های ­هاپلوئید مضاعف جو و گیاه چاودار، آزمایشی در قالب طرح لاتیس ساده با دو تکرار در مزرعه تحقیقاتی دانشگاه زنجان در سال 1397 اجرا شد. یک ردیف چاودار در وسط کرت‌های آزمایشی جو کشت شد. برخی صفات فیزیولوژیک و ارتفاع بوته در چاودار اندازه‌گیری شده و محتوای فنل نیز در جو در شرایط طبیعی مورد مطالعه قرار گرفت.
یافته‌ها: نتایج حاصل از اثر آللوپاتی لاین‌های مضاعف جو نشان داد از نظر ارتفاع بوته، محتوای کلروفیل b، میزان کارتنوئید، مقدار کربوهیدرات و شاخص محتوای کلروفیل (SPAD) در گیاه چاودار اختلاف معنی‌داری ایجاد شد. لاین‌های هاپلوئید مضاعف جو نیز از نظر محتوای فنل اختلاف معنی­دار داشتند.
نتیجه‌گیری: نتایج این تحقیق می‌تواند نشان‌ دهنده پتانسیل جمعیت هاپلوئید مضاعف جو معروف به OWB در مطالعات ژنتیک آللوپاتی باشد.


 
متن کامل [PDF 2126 kb]   (270 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1401/7/29 | ویرایش نهایی: 1402/6/21 | پذیرش: 1401/10/3 | انتشار: 1402/6/21

فهرست منابع
1. Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23:112-121.
2. Arroyo, A.I., Y. Pueyo, M.L. Giner, A. Foronda, P. Sanchez-Navarrete, H. Saiz and C. L. Alados. 2018. Evidence for chemical interference effect of an allelopathic plant on neighboring plant species: a field study. PloS one, 13(2). [DOI:10.1371/journal.pone.0193421]
3. BabaieZarch, M.J., S. Mahmoodi and S.V. Eslami. 2014. Identification of some pheno-morpho-physiological measures for selection of highly competitive sunflower (Helianthus annuus L.) varieties against tumble pigweed (Amaranthus albus L.) using multivariate statistical methods. Iranian journal of crop Breeding. 8(17): 104-113. (In Persian with English Abstract). [DOI:10.18869/acadpub.jcb.8.17.113]
4. Bais, H.P., R. Vepachedu, S. Gilroy, R.M. Callaway and J.M. Vivanco. 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301(5638): 1377-1380. [DOI:10.1126/science.1083245]
5. Bouhaouel, I., A. Gfeller, K. Boudabbous, M.L. Fauconnier, H.S. Amara and P. du Jardin. 2018. Physiological and biochemical parameters: new tools to screen barley root exudate allelopathic potential (Hordeum vulgare L. subsp. vulgare). Acta Physiologiae Plantarum, 40(2): 1-14. [DOI:10.1007/s11738-018-2604-0]
6. Bouhaouel, I., A. Gfeller, M.L. Fauconnier, S. Rezgui, H. Slim Amara and P. Du Jardin. 2015. Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. BioControl, 60(3): 425-436. [DOI:10.1007/s10526-014-9634-3]
7. Costa, J.M., A. Corey, P.M. Hayes, C. Jobet, A. Kleinhofs, A. Kopisch-Obusch, S.F. Kramer, D. Kudrna, M. Li, O. Riera-Lizarazu, K. Sato, P. Szucs, T. Toojinda, M.I. Vales and R.I. Wolfe. 2001. Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theoretical and Applied Genetics, 103(2): 415-424. [DOI:10.1007/s001220100622]
8. Da Silva, E.R., P. Ferreira, G.E. Overbeck and G.L. Soares. 2015. Does the phytotoxic shrub Heterothalamus psiadioides affect a plant community through allelopathy? Plant Ecology, 216(1): 87-97. [DOI:10.1007/s11258-014-0418-8]
9. Djanaguiraman, M. 2005. Physiological responses of Eucalyptus globulus leaf leachate onseedling physiology of rice, sorghum and blackgram. International Journal of Agriculture and Biology (Pakistan), 7(1): 39-44.
10. Fitter, A. 2003. Making allelopathy respectable. Science, 301(5638): 1337-1338. [DOI:10.1126/science.1089291]
11. Haghpanah, K., R.G. Mirfakhraee, M. Khodadadi and S. Shamsifar. 2020. Study on genetic diversity of some barley (Hordeum vulgare L.) cultivars using SSR marker and physiologycal traits plant pigments and prolin under late cold stress. Iranian journal of crop Breeding. 12(34): 199-209. (In Persian with English Abstract). [DOI:10.29252/jcb.12.34.199]
12. Hoseynzadeh, M., KH. Kiarostami, M. Ilkhanizadeh and A. Sabora. 2009. Investigating the effect of allelopathic compounds of barley (Hordeum spontaneum) on the amount of proteins, carbohydrates and the activity of some enzymes of wheat (Triticum aestivum L.). Iranian Journal of Biology, 22(3): 392-406. (In Persian with English Abstract)
13. Inderjit. 2001. Soil: Environmental effects on allelochemical activity. Agronomy Journal, 93: 79-84. [DOI:10.2134/agronj2001.93179x]
14. Kremer, R.J. and M. Ben-Hammouda. 2009. Allelopathic Plants. 19. Barley (Hordeum vulgare L.). Allelopathy Journal, 24(2): 225-242.
15. Li, Y. P., Y.L. Feng, Z.L. Kang, Y.L. Zheng, J.L. Zhang and Y.J. Chen. 2017. Changes in soil microbial communities due to biological invasions can reduce allelopathic effects. Journal of Applied Ecology, 54(5): 1281-1290. [DOI:10.1111/1365-2664.12878]
16. Madaeni, Sh. and E. tohidinejad. 2020. Allelopathic effects of aqueous extract of three barley cultivars (Hordeum vulgare) on germination and pigment content of Whitetop, Rye grass and Flixweed. Iran Journal Weed Science, 1(16): 147-156 (In Persian with English Abstract).
17. Mignoni, D.S.B., K. Simoes and M.R. Braga. 2018. Potential allelopathic effects of the tropical legume Sesbania virgata on the alien Leucaena leucocephala related to seed carbohydrate metabolism. Biological Invasions, 20(12): 165-180. [DOI:10.1007/s10530-017-1524-z]
18. Molisch, H. 1937. einfluss einer pflanze auf die andere, allelopathie.
19. Olofsdotter, M., L.B. Jensen and B. Courtois. 2002. Improving crop competitive ability using allelopathy-an example from rice. Plant Breeding, 121: 1-9. [DOI:10.1046/j.1439-0523.2002.00662.x]
20. Paquin, R. and P. Lechasseur. 1979. Observations sur une méthode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany, 57(18): 1851-1854. [DOI:10.1139/b79-233]
21. Poonpaiboonpipat, T., U. Pangnakorn, U. Suvunnamek, M. Teerarak, P. Charoenying and C. Laosinwattana. 2013. Phytotoxic effects of essential oil from Cymbopogon citratus and its physiological mechanisms on barnyardgrass (Echinochloa crus-galli). Industrial Crops and Products, 41: 403-407. [DOI:10.1016/j.indcrop.2012.04.057]
22. Saharkhiz, M.J., S. Smaeili and M. Merikhi. 2010. Essential oil analysis and phytotoxic activity of two ecotype of Zataria multiflora Boiss. Growing in Iran. Natural Product Research, 24(17): 1598-1609. [DOI:10.1080/14786411003754280]
23. Scavo, A., G. Pandino, A. Restuccia, P. Caruso, S. Lombardo and G. Mauromicale. 2022. Allelopathy in Durum Wheat Landraces as Affected by Genotype and Plant Part. Plants, 11(8): 1021. [DOI:10.3390/plants11081021]
24. Seevers, P. and J. Daly. 1970. Studies on Wheat stem rust resistance controlled at the Sr6 locus. I. The role of phenolic compounds. Phytopathology, 60(9): 1322-1328. [DOI:10.1094/Phyto-60-1322]
25. Shibayama, H. 2008. Weeds and weed management in rice production in Japan. Weed Biology and Management, 10: 53-60. [DOI:10.1046/j.1445-6664.2001.00004.x]
26. Siyar, S., Z. Muhammad, F. Hussain, Z. Hussain, S. Islam, and A. Majeed. 2018. Allelopathic Effects of two Asteraceae Weeds (Artemisia annua and Taraxicum officinalis) on Germination of Maize and Wheat. PSM Biological Research, 3(2): 44-47.
27. Wardle, D.A., M.C. Nilsson, C. Gallet and O. Zackrisson. 1998. An ecosystem-level perspective of allelopathy. Biological Reviews, 73(3): 305-319. [DOI:10.1017/S0006323198005192]
28. Weston, L.A. 2000. Are laboratory bioassays for allelopathy suitable for prediction of field responses? Journal of Chemical Ecology, 26(9): 2111-2118. [DOI:10.1023/A:1005516431969]
29. Wu, H., J. Pratley, W. Ma and T. Haig. 2003. Quantitative trait loci and molecular markers associated with wheat allelopathy. Theoretical and Applied Genetics, 107(8): 1477-1481. [DOI:10.1007/s00122-003-1394-x]
30. Zeng, D., Q. Qian, S. Teng, G. Dong, H. Fujimoto, K.Yasufumi, and L. Zhu. 2003. Genetic analysis of rice allelopathy. Science Bulletin (Beijing), 48(3): 265-268. [DOI:10.1007/BF03183295]
31. Zia-Hoseini, S.S. and M.T. Barar pour. 2019. Allelopathic effect of different rates and ages of sunflower plant (Helianthus annus L.) residues on emergence and growth of corn (Zea mays L.). Iranian Journal of Crop Sciences. 4:2. 107-116 (In Persian with English Abstract).
32. Zuo, S.P., L.T. Ye and H. Mei. 2011. Physiological basis for allelopathic potential of different wheat cultivars in heading period on the Loess Plateau of China. African Journal of Biotechnology, 10(24): 9786-9795. [DOI:10.5897/AJB11.705]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb