1. Chen, L., F. Ren, H. Zhong, W. Jiang and X. Li. 2020. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochimica et Biophysica Sinica, 42(2):154-164. [
DOI:10.1093/abbs/gmp113]
2. Naveed, M., H. Sajid, A. Mustafa, B. Niamat, Z. Ahmad, M. Yaseen, M. Kamran, M. Rafique, S. Ahmar and J.T. Chen. 2020. Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica napus L.) through calcium-fortified composted animal manure. Sustain, 12: 1-17. [
DOI:10.3390/su12030846]
3. Qaderi, M.M., L.V. Kurepin and D.M. Reid. 2016. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Acta Physiologiae Plantarum, 128: 710-721. [
DOI:10.1111/j.1399-3054.2006.00804.x]
4. Wu, W., B.L. Ma, and J.K. Whalen. 2018. Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: Perspectives for stress adaptation from root system architecture. Advances in Agronomy, 151: 87-159. [
DOI:10.1016/bs.agron.2018.05.002]
5. Mohammadi, P.P., A. Moieni and S. Komatsu. 2012. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids, 43(5): 2137-2152. [
DOI:10.1007/s00726-012-1299-6]
6. Ghosh, D. and J. Xu. 2014. Abiotic stress responses in plant roots: a proteomics perspective. Frontiers in Plant Science, 5: 6-9. [
DOI:10.3389/fpls.2014.00006]
7. Goche, T., N.G. Shargie, I. Cummins, A.P. Brown, S. Chivasa and R. Ngara. 2020. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Scientific Reports, 10(1): 1-18. [
DOI:10.1038/s41598-020-68735-3]
8. Vejan, P., R. Abdullah, T. Khadiran, S. Ismail, and A.N. Boyce. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules, 21(5): 573. [
DOI:10.3390/molecules21050573]
9. Chauhan, H., D.J. Bagyaraj, G. Selvakumar, and S.P. Sundaram. 2015. Novel plant growth promoting rhizobacteria-Prospects and potential. Applied Soil Ecology, 95:38-53. [
DOI:10.1016/j.apsoil.2015.05.011]
10. Govindasamy, V., P. George, M. Kumar, L. Aher, S.K. Raina, J. Rane, K. Annapurna, and P.S. Minhas. 2020. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum. 3 Biotech, 10(1):1-14. [
DOI:10.1007/s13205-019-2001-4]
11. Li, J., B.J. McConkey, Z. Cheng, S. Guo, and B.R. Glick. 2013. Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. Journal of Proteomics, 84:119-131. [
DOI:10.1016/j.jprot.2013.03.011]
12. Naveed, M., B. Mitter, T.G. Reichenauer, K. Wieczorek, and A. Sessitsch. 2014. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97:30-39. [
DOI:10.1016/j.envexpbot.2013.09.014]
13. Oskuei, B.K., A. Bandehagh, M.R. Sarikhani and S. Komatsu. 2018. Protein profiles underlying the effect of plant growth-promoting rhizobacteria on canola under osmotic stress.Journal of Plant Growth Regulation, 37(2): 560-574. [
DOI:10.1007/s00344-017-9754-y]
14. Schonfeld, M.A., R.C. Johnson, B.F. Carver, and D.W. Mornhinweg, 1988. Water Relations in Winter Wheat as Drought Resistance Indicators. Crop Science, 28: 526-531 [
DOI:10.2135/cropsci1988.0011183X002800030021x]
15. Stuart, J.J. 1940. Standardization of electrolyte leakage data and a novel liquid nitrogen control improve measurements of cold hardiness. Plant Methods, 17:53.
16. Janero, D.R. 1990. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 9: 515-540. [
DOI:10.1016/0891-5849(90)90131-2]
17. Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1): 205-207. [
DOI:10.1007/BF00018060]
18. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. [
DOI:10.1016/0003-2697(76)90527-3]
19. Beyer J. and I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2): 559-566. [
DOI:10.1016/0003-2697(87)90489-1]
20. Kar, M. and D. Mishra. 1976. Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant physiology, 57(2): 315-319. [
DOI:10.1104/pp.57.2.315]
21. Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23:112-121.
22. Thomas, C., T. Alcock, N. Graham, R. Hayden, S. Matterson, L. Wilson, S. Young, L. Dupuy, P. White, J. Hammond, J. Danku, D. Salt, A. Sweeney, I. Bancroft, and M. Broadley. 2016. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. Journal Plant Biology, 16: 214-232. [
DOI:10.1186/s12870-016-0902-5]
23. Franco, J.A. 2018. Root development under drought stress. Technol Knowl Transf e-Bull, 2:1-3.
24. Sarma, R.K. and R.R. Saikia. 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRK21. Plant and Soils, 377: 111-126. [
DOI:10.1007/s11104-013-1981-9]
25. Salehi-lisar S.Y., R. Hossain, and I.M.M. Rahman. 2012. Water stress in plants: causes, effects and responses, water stress. In: Ismail Md. Mofi zur Rahman, editor. InTech. 1-14.
26. Salehi-Lisar, S.Y. and H. Bakhshayeshan-Agdam. 2016. Drought Stress in Plants: Causes, Consequences, and Tolerance. In: Hossain, M.A., Wani, S.H., Bhattacharjee, S., Burritt, D.J. and Tran, L. S. P. (eds). Drought Stress Tolerance in Plants. Vol 1. Physiology and Biochemistry. Springer. pp: 1-16. [
DOI:10.1007/978-3-319-28899-4_1]
27. Safari, D. and M. Azadikhah. 2018. The effect of Pseudomonas fluorescent bacteria, plant growth promoter, on some physiological indicators, yield and yield components of rapeseed under salt stress. Journal of Crop Physiology, 11(42): 83-67.
28. Akhtar, I. and N. Nazir. 2013. Effect of drought stress in plants. International Journal of Water Resources & Environmental Sciences, 2: 34-40.
29. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, S.M.A. Basra. 2015. Plant drought stress: effects, mechanisms and management. ASD. 29: 185-212. [
DOI:10.1051/agro:2008021]
30. Gigon A., A. Matos, D. Laffray, Y. Zuily-fodil Pham-Thi. 2014. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana, Annals of Botany, 94: 345-351. [
DOI:10.1093/aob/mch150]
31. Ashraf, M. and M. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206-216. [
DOI:10.1016/j.envexpbot.2005.12.006]
32. Aranjuelo, I., G. Molero, G Erice, J.C. Avice, S. Nogués. 2011. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany, 62(1): 111-123. [
DOI:10.1093/jxb/erq249]
33. Tiwari et al. 2016
34. Deepak, S.B., A. Thakur, S. Singh, M. Bakshi, S. Bansal. 2019. Changes in crop physiology under drought stress: A review. Journal of Pharmacognosy and Phytochemistry, 8: 1251-1253.
35. SkZ, A., S. Vardharajula and S.S.K.P., Vurukonda. 2018. Transcriptomic profiling of maize (Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under drought stress. Annals of Microbiology, 68(6): 331-349. [
DOI:10.1007/s13213-018-1341-3]
36. Demirevska, K., L. Simova-Stoilova, V. Vassileva, I. Vaseva, B. Grigorova and U. Feller. 2018. Drought-induced leaf protein alterations in sensitive and tolerant wheat varieties. General and Applied Plant Physiology, 34(1-2):79-102.
37. Foyer, C.H. and G. Noctor. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept oxidative stress in a physiological context. PCE. 28: 1056-1071. [
DOI:10.1111/j.1365-3040.2005.01327.x]
38. Chaves, M.M., J.M. Costa, N.J.M. Saibo. 2011. Recent advances in photosynthesis under drought and salinity. Advances in Botanical Research, 57: 49-104. [
DOI:10.1016/B978-0-12-387692-8.00003-5]
39. Singh, R.P., P. Jha and P.N. Jha. 2017a. Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.). Journal of Plant Growth Regulation, 36(3): 783-798. [
DOI:10.1007/s00344-017-9683-9]
40. Singh, R.P., A. Runthala, S. Khan and P.N. Jha. 2017b. Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8. PloS one, 12(9): 0183513. [
DOI:10.1371/journal.pone.0183513]
41. Rezaeinia, M., Bihamta, M., Peighambari, S.A., and Abbsi, A.R. 2019. Effect of Drought Stress on Antioxidant Enzymes Activities and Some Physiological Traits in Chickpea (Cicer Arietinum L.). Journal of Crop Breeding, 11(30): 11-22 (In Persian). [
DOI:10.29252/jcb.11.30.11]
42. Dastneshan, S., M.R. Bihamta, A. Abbasi and M. Sabokdast. 2019. The Effect of Different Levels of Drought Stress on some Physiological Traits and Chlorophyll Fluorescence of Bean Genotypes (Phaseolus Vulgaris L.). Journal of Crop Breeding, 11 (31) :92-104. (In Persian). [
DOI:10.29252/jcb.11.31.92]