1. Akhtar, S., J. Ahmad and A. Ahmad. 2017. Molecular network of monoterpene indole alkaloids (MIAs) signaling in plants with reference to Catharanthus roseus (L.) G. Don. In Stress Signaling in Plants: Genomics and Proteomics Perspective, 2: 37-67. [
DOI:10.1007/978-3-319-42183-4_2]
2. Aghaei, R. and M. Majidi. 2021. Effect of foliar spraying of titanium dioxide nanoparticles on biochemical responses, growth, yield and essential oil content of carum copticum under salinity stress, https://civilica.com/doc/1361261 (In Persian).
3. Almagro, L., J. Gutierrez, M.A. Pedreño and M. Sottomayor. 2014. Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures, Plant Cell, Tissue and Organ Culture, 119(3): 543-551. [
DOI:10.1007/s11240-014-0554-9]
4. Dutta, A., J. Batra, S. Pandey-Rai and H.D. Singh. 2015. Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.), Planta, 220(3): 376-383. [
DOI:10.1007/s00425-004-1380-9]
5. Fabriki-Ourang, S., S. Darghahi and A. Pour-Aboughadareh. 2019. The effects of titanium dioxide nano-elicitor on the expression profile of sanguinarin biosynthesis pathway genes in greater celandine (Chelidonium majus L.), Modern Genetics Journal (MGJ), 13(4): 513-523.
6. Hong, F., J. Zhou, C. Liu, F. Yang, C. Wu, L. Zheng and P. Yang. 2005. Effects of Nano TiO2 on photochemical reaction of chloroplasts of Spinach, Journal Biological Trace Element Research, 105: 269-279. [
DOI:10.1385/BTER:105:1-3:269]
7. Karimzadeh, F., R. Haddad and G. Garoosi. 2019. The effects of nano-ZnO and nano-TiO2 on expression of Phenylalanine ammonia lyase (PAL) and Cinnamyl alcohol dehydrogenase (CAD) genes in cell culture of Linum usitatissimum L. Modern Genetics Journal (MGJ), 14(2): 171-177.
8. Kumar, S., B. Singh and R. Singh. 2022. Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities, Journal of Ethnopharmacology, 284:114647. [
DOI:10.1016/j.jep.2021.114647]
9. Kazemi, B., M. Ranjbar, Z. Rezayatmand and A.M. Ahadi. 2022. Examination of the Effect of Application Time of Titanium and Methyl Jasmonate Nanoparticles on Physiological, Growth, and Biochemical Characteristics of Savory Daenesis (Satureja hortensis L), Journal of Plant Process and Function, 11(48): 315-337
10. Liu, Y., D. Zhao, YT. Zu and Y. Jiang. 2010. Effects of low light on terpenoid indole alkaloid accumulation and related biosynthetic pathway gene expression in leaves of Catharanthus roseus seedlings, Botanical Studies, 52: 191-196.
11. Liu, Y., B. Patra, SK. Singh, P. Paul, Y. Zhou, Y. Li, Y. Wang, S. Pattanaik and L. Yuan. 2021. Terpenoid indole alkaloid biosynthesis in Catharanthus roseus: effects and prospects of environmental factors in metabolic engineering, Biotechnology Letters, 43(11): 2085-2103. [
DOI:10.1007/s10529-021-03179-x]
12. Mazarie, A., S. Mousavi-nik, A. Ghanbari and L. Fahmideh. 2019. Effect of different spraying concentrations of jasmonic acid and titanium dioxide nanoparticles on some physiological traits and antioxidant system activity of Sage (Salvia officinalis L), Iranian Journal of Plant Biology, 11(1): 1-22.
13. Mistry, V., S. Darji, P. Tiwari and A. Sharma. 2022. Engineering Catharanthus roseus monoterpenoid indole alkaloid pathway in yeast, Applied Microbiology and Biotechnology, 106(7): 2337-2347. [
DOI:10.1007/s00253-022-11883-5]
14. Mingyu, S., F. Hong, C. Liu, X. Wu, X. Liu and L. Chen. 2007. Effects of nano-anatase TiO2 on absorption, distribution of light and photo reduction activities of chloroplast membrane of spinach, Biological Trace Element Research, 118: 120-130. [
DOI:10.1007/s12011-007-0006-z]
15. Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida and D.S. Kumar. 2010. Nanoparticulate material delivery to plants, Plant Science, 179: 154-163. [
DOI:10.1016/j.plantsci.2010.04.012]
16. Pan, Q., N. R. Mustafa, K. Tang, Y. H. Choi and R. Verpoorte. 2016. Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites, Phytochemistry Reviews, 15(2): 221-250. [
DOI:10.1007/s11101-015-9406-4]
17. Papon, N., J. Bremer, A. Vansiri, F. Andreu, M. Rideau and J. Crèche. 2015. Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells, Planta Medica, 71: 572-574. [
DOI:10.1055/s-2005-864163]
18. Pfaffl, M.W. 2001. A new mathematical model for relative quantification in Real-Time RT-PCR, Nucleic acids research, 29(9): e45-e45. [
DOI:10.1093/nar/29.9.e45]
19. Roseus, S.M., M, Farsi and K.A. Mirshamsi. 2017. Evaluation of ethylene effect on expression level of T16H, G10H, DAT and AVLBS genes in Catharanthus, Scientific Information Database, 9(2): 151-160.
20. Sibéril, Y., S. Benhamron, J. Memelink, N. Giglioli-Guivarc'h, M. Thiersault, B. Boisson and P. Gantet. 2014. Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures, Plant Molecular Biology, 45(4): 477-488. [
DOI:10.1023/A:1010650906695]
21. Srivastava, S., R. Pandey, S. Kumar and C.S. Nautiyal. 2014. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants, Protoplasma, 251(6): 1307-1320. [
DOI:10.1007/s00709-014-0621-4]
22. Sheikhalipour, M., G. Gohari and B. Esmaielpour. 2022. Melatonin and TiO2 NPs application-induced changes in growth, photosynthesis, antioxidant enzymes activities and secondary metabolites in Stevia (Stevia rebaudiana Bertoni) under drought stress conditions, Journal Plant Growth Regulation,
https://doi.org/10.1007/s00344-022-10679-1 [
DOI:10.1007/s00344-022-10679-1.]
23. Perveen, S., N. Safdar, A. Yasmin and Y. Bibi. 2022. DAT and PRX1 gene expression modulates vincristine production in Catharanthus roseus L. propagates using Cu, Fe and Zn nano structures, Plant Science, 320: 111264. [
DOI:10.1016/j.plantsci.2022.111264]
24. Twaij, B.M. and M.N. Hasan. 2022. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses, International Journal of Plant Biology, 13: 4-14. [
DOI:10.3390/ijpb13010003]
25. Wei, S. 2010. Methyl jasmonic acid induced expression pattern of terpenoid indole alkaloid pathway genes in Catharanthus roseus seedlings, Plant Growth Regulation, 61(3): 243-251. [
DOI:10.1007/s10725-010-9468-7]
26. Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu, P. Yang. 2006. Influence of nanoanatase TiO2 on the nitrogen metabolism of growing spinach, Biological Trace Element Research 110(2): 179-190. [
DOI:10.1385/BTER:110:2:179]
27. Zhang, L., G.A.I. Qing-Hui, Z.U. Yuan-Gang, Y.A.N.G. Lei, M.A. Yu-Liang and L.I.U Yang. 2014. Simultaneous quantitative determination of five alkaloids in Catharanthus roseus by HPLC-ESI-MS/MS, Chinese journal of natural medicines, 12: 786-793 [
DOI:10.1016/S1875-5364(14)60120-5]
28. Zhao, J., WH. Zhu, Q. Hu and XW HE. 2001. Enhanced indole alkaloid production in suspension compact callus clusters of Catharanthus roseus: impacts of plant growth regulators and sucrose, Plant Growth Regulation. 33(1): 33-41.
29. Mezginezhad, Z., M. Ghaderi, Z. Alizde and A. Izanloo. 2019. Effect of iron oxide and zinc oxide nanoparticles of on callus viability of seedless barberry, Journal of Crop Breeding, 11(30): 198-205 [
DOI:10.29252/jcb.11.30.198]
30. (In Persian).
31. Talebi, F., V. Akbarpour and V. Chalavi. 2022. Effect of methanol and titanium dioxide nanoparticles on phytochemical properties of artichoke (Cynara scolymus L.), Journal of Crop Breeding, 14(43): 84-94 (In Persian). [
DOI:10.52547/jcb.14.43.84]