دوره 15، شماره 47 - ( پاییز 1402 )                   جلد 15 شماره 47 صفحات 218-206 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bameri F, Ahmadi-Afzadi M, Rahimi M, Mirzaei S. (2023). Investigating the Genetic Diversity of Iranian and Foreign Cultivars of Soybean (Glycine max) using Morphological Characteristics. J Crop Breed. 15(47), 206-218. doi:10.61186/jcb.15.47.206
URL: http://jcb.sanru.ac.ir/article-1-1410-fa.html
بامری فریدون، احمدی افزادی مسعود، رحیمی مهدی، میرزایی سعید. بررسی تنوع ژنتیکی ارقام ایرانی و خارجی سویا (Glycine max) با استفاده از خصوصیات مورفولوژیکی پژوهشنامه اصلاح گیاهان زراعی 1402; 15 (47) :218-206 10.61186/jcb.15.47.206

URL: http://jcb.sanru.ac.ir/article-1-1410-fa.html


1- گروه بیوتکنولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم، تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران
2- گروه بیوتکنولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم، تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان ایران
3- گروه بیوتکنولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم، تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان
چکیده:   (1611 مشاهده)
چکیده مبسوط
مقدمه و هدف:
سویا گیاهی چندساله و دیپلوئید (40=x2=n2) و یکی از مهم‌ترین گیاهان برای تأمین پروتئین و علوفه می‌باشد. سویا قرن‌هاست که غذای مردم آسیا مخصوصاً چین بوده است و مردم چین آن را همراه با برنج به‌عنوان غذای اصلی خودمصرف می‌کنند. ایالات‌متحده آمریکا بزرگ‌ترین تولید­کننده سویا می‌باشد و تقریباً دوسوم محصول کل دنیا را تولید می‌کند. سویا در ایران بنام (لوبیا روغنی)، (لوبیا چینی) سوژا و دانه سویا معروف است. با بهره‌گیری از ارقام جدید و پربازده، می‌توان عملکرد اقتصادی این محصول را افزایش داد؛ بنابراین معیارهای انتخاب والدین نه­‌تنها ازنظر ارزش زراعی بلکه برای عدم تمایز ژنتیکی نیز باید در نظر گرفته شود. تولید ارقام جدید و بهبود­یافته را می­‌توان با منابع جدید تنوع ژنتیکی افزایش داد؛ بنابراین معیارهای انتخاب سهم والدین نه‌­تنها ازنظر ارزش زراعی بلکه برای عدم تمایز ژنتیکی نیز باید در نظر گرفته شود؛ بنابراین، درک تنوع ژنتیکی ژرم­پلاسم سویا برای گسترده­‌تر کردن پایه ژنتیکی و استفاده بیشتر از آن در برنامه تولیدمثل ضروری است.

مواد و روش‌ها: در این تحقیق تعداد 21 رقم سویا بر اساس صفات وزن تر و خشک گیاه، وزن تر و خشک برگ، شاخص تورژسانس، RWC، طول و عرض برگ، سطح برگ، ارتفاع گیاه، تعداد شاخه‌های جانبی، تعداد گره و فاصله بین گره‌ها، در قالب طرح آزمایشی به‌صورت کاملاً تصادفی در پنج تکرار در سال 1400 در پژوهشکده علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، مورد بررسی قرار گرفتند.
یافته‌ها: بیشترین میزان وزن تر (452/1 گرم) مربوط به ارقام (F3)DM و BUNYA و بیشترین تعداد گره (30/4) مربوط به ارقام NAHO، NOD-139 و ROSE بود. کمترین میزان وزن تر (107/22 گرم) مربوط به رقم BRAGG و کمترین تعداد گره (8/8) مربوط به رقم BRAGG بوده است. بیشترین تعداد شاخه‌های جانبی (9)، مربوط به رقم KATOL و کمترین فاصله تعداد شاخه جانبی (2) مربوط به رقم S355-4 بوده است. بیشترین مقدار نسبی آب (RWC) (77/1) مربوط به ارقام SALAND و DM(F3) و کمترین مقدار نسبی آب (RWC) (48/4) مربوط به رقم FORREST بوده است.
نتیجه‌گیری: با توجه به اینکه رقم DM(F3) دارای بیشترین زیست‌توده (وزن تر و وزن خشک)، محتوای شاخص نسبی آب (RWC) و شاخص تورژسانس بوده لذا می‌تواند به‌عنوان والد مناسب در پروژه‌های تلاقی برای بهبود ژنتیکی سویا استفاده شود.
متن کامل [PDF 1943 kb]   (705 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1401/6/18 | پذیرش: 1402/2/17

فهرست منابع
1. Abideen, Z., Koyro, H. W., Hussain, T., Rasheed, A., Alwahibi, M. S., Elshikh, M. S., Hussain, M. I., Zulfiqar, F., Mansoor, S., & Abbas, Z. (2022). Biomass Production and Predicted Ethanol Yield Are Linked with Optimum Photosynthesis in Phragmites karka under Salinity and Drought Conditions. Plants, 11(13), 1657. [DOI:10.3390/plants11131657]
2. Ahmand, Z., Fahmideh, L., & Fazeli-Nasab, B. (2017). Genetic Evaluation of Cumin and Caraway Using Eryngium planum Microsatellite Markers. Scientific Journal Management System, 8(2), 59-71.
3. Ammarellou, A., Yousefi, A. R., Heydari, M., Uberti, D., & Mastinu, A. (2022). Biochemical and Botanical Aspects of Allium sativum L. Sowing. BioTech (Basel), 11(2). [DOI:10.3390/biotech11020016]
4. Aremu, C., Adebayo, M., Ariyo, O., & Adewale, B. (2007). Classification of genetic diversity and choice of parents for hybridization in cowpea Vigna unguiculata (L.) Walp for humid savanna ecology. African Journal of Biotechnology, 6(20), 2333-2339. [DOI:10.5897/AJB2007.000-2366]
5. Asekova, S., Kulkarni, K. P., Patil, G., Kim, M., Song, J. T., Nguyen, H. T., Grover Shannon, J., & Lee, J.-D. (2016). Genetic analysis of shoot fresh weight in a cross of wild (G. soja) and cultivated (G. max) soybean. Molecular breeding, 36(7), 1-15. [DOI:10.1007/s11032-016-0530-7]
6. Bally, I. S., & Dillon, N. L. (2018). Mango (Mangifera indica L.) Breeding. In: Al-Khayri J., Jain S., Johnson D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. [DOI:10.1007/978-3-319-91944-7_20]
7. Cheema, A. K. (2018). Plant Breeding its Applications and Future Prospects. International Journal of Engineering Technology Science and Research, 5(3), 88-94.
8. Chung, G., & Singh, R. J. (2008). Broadening the genetic base of soybean: a multidisciplinary approach. Critical reviews in plant sciences, 27(5), 295-341. [DOI:10.1080/07352680802333904]
9. Delgado, M., Ligero, F., & Lluch, C. (1994). Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biology and Biochemistry, 26(3), 371-376. [DOI:10.1016/0038-0717(94)90286-0]
10. Hassan, A., Parveen, A., Hussain, S., Hussain, I., & Rasheed, R. (2022). Investigating the role of different maize (Zea mays L.) cultivars by studying morpho-physiological attributes in chromium-stressed environment. Environ Sci Pollut Res Int, 29(48), 72886-72897. [DOI:10.1007/s11356-022-19398-2]
11. Heidari, n. (2015). Effects of drought stress on photosynthesis, its parameters and relative water content of anise (Pimpinella anisum L.). Journal of Plant Research (Iranian Journal Of Biology), 27(5), 829-839.
12. Hyten, D. L., Song, Q., Zhu, Y., Choi, I.-Y., Nelson, R. L., Costa, J. M., Specht, J. E., Shoemaker, R. C., & Cregan, P. B. (2006). Impacts of genetic bottlenecks on soybean genome diversity. Proceedings of the National Academy of Sciences, 103(45), 16666-16671. [DOI:10.1073/pnas.0604379103]
13. Jahantigh-Haghighi, Z., Fahmideh, L., & Fazeli-Nasab, B. (2020). Genetic diversity in plant medicinal of Tomato Genotypes using RAPD and ISSR markers. Agricultural Biotechnology, 10(2), 29-41.
14. Jahantigh-Haghighi, Z., fahmideh, l., & Fazeli-Nnasab, B. (2020). Evaluation of Genetic Diversity in Different Cultivars of Tomato Using RAPD and ISSR Markers. Scientific Journal Management System, -.
15. Jani pour, L., Fahmideh, l., & Fazeli-Nasab, B. (2018). Genetic assessment of some populations of the medicinal plant Caraway (Carum carvi) using RAPD and ISSR markers. Journal of Iranian Plant Ecophysiological Research, 12(48), 78-91.
16. Janipour, l., Fahmideh, l., & Fazeli-Nasab, B. (2018). Genetic evaluation of different population of Cumin (Cuminum cyminum L.) using DNA molecular markers. Journal of Cellular and Molecular Researches, 31(1), 16-32.
17. Jomeh Ghasem Abadi, Z., Fakheri, B., & Fazeli-nasab, B. (2019). Study of the Molecular Diversity of Internal Transcribed Spacer Region (ITS1.4) in Some Lettuce Genotypes [Research]. Journal of Crop Breeding, 11(29), 29-39. [DOI:10.29252/jcb.11.29.29]
18. Kachare, S., Tiwari, S., Tripathi, N., & Thakur, V. V. (2020). Assessment of genetic diversity of soybean (Glycine max) genotypes using qualitative traits and microsatellite markers. Agricultural research, 9(1), 23-34. [DOI:10.1007/s40003-019-00412-y]
19. Kumar, S., Susmita, C., Sripathy, K., Agarwal, D. K., Pal, G., Singh, A. N., Kumar, S., Rai, A. K., & Simal-Gandara, J. (2022). Molecular characterization and genetic diversity studies of Indian soybean (Glycine max (L.) Merr.) cultivars using SSR markers. Molecular Biology Reports, 49(3), 2129-2140. [DOI:10.1007/s11033-021-07030-4]
20. Kumawat, G., Singh, G., Gireesh, C., Shivakumar, M., Arya, M., Agarwal, D. K., & Husain, S. M. (2015). Molecular characterization and genetic diversity analysis of soybean (Glycine max (L.) Merr.) germplasm accessions in India. Physiology and Molecular Biology of Plants, 21(1), 101-107. [DOI:10.1007/s12298-014-0266-y]
21. Liu, Y., Sun, M., Chen, Q., Xin, D., & Sun, X. (2021). Mapping quantitative trait loci related to nodule number in soybean (Glycine max (L.) Merr.) in response to the Sinorhizobium (Ensifer) fredii HH103 NopT type III effector. Journal of Plant Interactions, 16(1), 126-135. [DOI:10.1080/17429145.2021.1908635]
22. Majd, R., Khatami, S. A., khakzad, r., Alebrahim, M. T., & Mohebodini, M. (2020). Evaluating of genetic diversity of Datura (Daturea stramonium L.) genotypes on the basis of morphological characters. Journal of Crop Production, 13(2), 51-68.
23. Majidian, p., masoudi, b., sadegh garmaroudi, h., & dalili, s. a. (2022). Evaluation of Genetic Phenological and Morphological in Different Soybean Cultivars in Alborz Province [Research]. Journal of Crop Breeding, 14(43), 180-192. [DOI:10.52547/jcb.14.43.180]
24. Malek, M. M., Galeshi, S., Zeinali, A., Ajamnorozi, H., & Malek, M. (2014). Investigation of leaf area index, dry matter and crop growth rate on the yield and yield components of soybean cultivars. Journal of Crop Production, 5(4), 1-18.
25. Maleki Asayesh, Z., Vahdati, K., & Aliniaeifard, S. (2021). Moderate salinity stress and its effect on water conservation capacity of in vitro plants of Persian walnut during desiccation. Journal of Plant Production Research, 28(2), 85-99.
26. Pourakbar, L., & Maghsomi, S. (2016). The response of wheat (Triticum aestivum L.) to the consumption of zinc under salt stress. Applied Field Crops Research, 29(1), 19-28.
27. Sadeqi, M. B., Dadshani, S., Yousefi, M., & Ajir, G. M. (2019). Investigation of Genetic Diversity in Afghan Bread Wheat Genotypes Using SSR and AFLP Markers. Turkish Journal of Agriculture-Food Science and Technology, 7(9), 1263-1267. [DOI:10.24925/turjaf.v7i9.1263-1267.2165]
28. Salehian, M., Darvishzadeh, R., & Rezazad Bari, M. (2021). Assessment of genetic diversity and association analysis for agro-morphological traits in pepper (Capsicum spp.) using ISSR markers. Journal of Plant Research (Iranian Journal Of Biology), 34(1), 126-138.
29. Shilpashree, N., Devi, S. N., Manjunathagowda, D. C., Muddappa, A., Abdelmohsen, S. A., Tamam, N., Elansary, H. O., El-Abedin, T. K. Z., Abdelbacki, A. M., & Janhavi, V. (2021). Morphological characterization, variability and diversity among vegetable soybean (Glycine max L.) genotypes. Plants, 10(4), 671. [DOI:10.3390/plants10040671]
30. Singh, R. J. (2019). Cytogenetics and genetic introgression from wild relatives in soybean. The Nucleus, 62(1), 3-14. [DOI:10.1007/s13237-019-00263-6]
31. Tabatabaee, M., Haddadi, F., Kamalaldini, H., & Fazeli-Nasab, B. (2018). Evaluation of the Ability of Retrotransposon Markers to Study the Genetic Diversity in some Populations of Radish (Raphanus Sativus) [Research]. Journal of Crop Breeding, 10(28), 27-37. [DOI:10.29252/jcb.10.28.27]
32. Vaez-Sarvari, H., Emamjomeh, A., & Fazeli-Nasab, B. (2022). Evaluation of genetic diversity of Cantaloupe landraces based on the internal transcriptional spacer regions (ITS1, 4). International Journal of Vegetable Science, 1-13. [DOI:10.1080/19315260.2022.2051664]
33. Vivodík, M., Saadaoui, E., Balážová, Ž., Gálová, Z., & Petrovičová, L. (2018). Genetic diversity and population structure in tunisian castor genotypes (Ricinus communis L.) Detected using scot markers. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 143-149. [DOI:10.5219/873]
34. Yang, X., Alidoust, D., & Wang, C. (2020). Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (Glycine max L.) plants. Acta Physiologiae Plantarum, 42(8), 128. [DOI:10.1007/s11738-020-03104-1]
35. Yousef, E. A., Mueller, T., Börner, A., & Schmid, K. J. (2018). Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks. PloS one, 13(2), e0192062. [DOI:10.1371/journal.pone.0192062]
36. Yousefi, S., Saeidi, H., & Assadi, M. (2018). Genetic Diversity Analysis of Red Clover (Trifolium pratense L.) in Iran Using Sequence Related Amplified Polymorphism (SRAP) Markers. Journal of Agricultural Science and Technology, 20(2), 373-386.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb