1. Abdollahi Hesar, A., O. Sofalian, B. Alizadeh, A. Asghari and H. Zali. 2020. Evaluation of some autumn canola genotypes based on agronomy traits and SIIG index. Journal of Crop Breeding, 12(34): 151-159 (In Persian) . [
DOI:10.29252/jcb.12.34.151]
2. Alizadeh Yeloojeh, Kh. and Gh. Saeidi. 2020. Evaluation of drought tolerance in some safflower (carthamus tinctorius L.) genotypes. Journal of Crop Production and Processing, 10(3): 1-11 (In Persian) . [
DOI:10.47176/jcpp.10.3.21733]
3. Amiri, R., P. Pezeshkpour and I. Karami. 2021. Identification of lentil desirable genotypes using multivariate statistical methods and selection index of ideal genotype under rainfed conditions. Journal of Crop Breeding, 13(39): 140-151.
4. Bolori, P., V. Rashidi, M. Yarnia, A. Razban Haghighi and M. Soltani. 2011. Evaluation of drought stress tolerance indices in sunflower cultivars. Journal of Crop Production Research (Environmental Stresses in Plant Scinces), 3 (2): 133-142 (In Persian) .
5. Bouslama, M. and W.T. Schapaugh. 1984. Stress tolerance in soybean. I: evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24: 933- 937. doi.org/10.2135/cropsci1984.0011183X002400050026x. [
DOI:10.2135/cropsci1984.0011183X002400050026x]
6. Farshadfar, E. and J. Javadinia. 2011. Evaluation of chickpea (cicer arietinum L.) genotypes for drought tolerance. Seed and Plant Improvement Journal, 27(4): 517-537.
7. Fernandez, G.C.J. 1992. Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress Tolerance. Kuo, C.G. (ed.). 257-270 pp., Asian Vegetable Research and Development Centre, Taiwan.
8. Fischer, R.A. and R. Maurer. 1978. Drought resistance in spring wheat cultivars. I. grain yield response. Australian Journal of Agricultural Research, 29: 897-912. [
DOI:10.1071/AR9780897]
9. Fischer, R.A. and J.T. Wood. 1979. Drought resistance in spring wheat cultivars. Yield association with morpho-physiological traits. Australian Journal of Agricultural Research, 30: 1001-1020. [
DOI:10.1071/AR9791001]
10. Gavuzzi, P., F. Rizza, M. Palumbo, R.G. Campaline, G.L. Ricciardi and B. Borghi. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77: 523- 531. [
DOI:10.4141/P96-130]
11. Gholizadeh, A., M. Ghaffari and F. Shariati. 2021. Use of selection index of ideal genotype (SIIG) in order to select new high yielding sunflower hybrids with desirable agronomic characteristics. Journal of Crop Breeding, 13(38): 116-123 (In Persian).
12. Ghorbani, M., D. Kahrizi and Z. Chaghakaboodi. 2020. Evaluation of Camelina sativa doubled haploid lines for the response to water-deficit stress. Journal of Medicinal Plants and By-products, 2: 193-199.
13. Gitore, S.A., B. Danga, S. Henga and F. Gurmu. 2021. Evaluating drought tolerance indices for selection of drought tolerant orange fleshed sweet potato (OFSP) genotypes in ethiopia. Agricultural Science and Food Technology, 7(2): 249-254. [
DOI:10.17352/2455-815X.000115]
14. Golkar, P., E. Hamzeh and S.A. Mirmohammady Maibody. 2021. Discrimination of drought tolerance in a worldwide collection of safflower (Carthamus tinctorius L.) genotypes based on selection indices. Acta agriculture Slovenica, 117(1): 1-11. [
DOI:10.14720/aas.2021.117.1.1656]
15. Karimizadeh, R., T. Hosseinpour, P. Sharifi, J. Alt Jafarby, K. Shahbazi Homonlo and K. Keshavarzi. 2021. Evaluation of grain yield stability of durum wheat genotypes using parametric and non-parametric methods. Plant Genetic Researches, 8(1): 115-132 (In Persian).
16. Kawall, K. 2021. Genome-edited Camelina sativa with a unique fatty acid content and its potential impact on ecosystems. Environmental Sciences Europe, 33: 1-12. [
DOI:10.1186/s12302-021-00482-2]
17. Morovati, I., A. Kordenaeej and H. Babaei. 2021. Evaluation of drought tolerance indices in soybeans. Journal of Crop Breeding, 13(37): 109-118 (In Persian).
18. Rosielle, A.A. and A.J. Hamblin. 1981. Theoretical aspects of selections for yield in stress and non-stress environment. Crop Science, 21:943-946. dx. doi.org/10.2135/cropsci1981.0011183X002100060033x. [
DOI:10.2135/cropsci1981.0011183X002100060033x]
19. Rostami Ahmadvandi, H., A. Zeinodini, R. Ghobadi and M. Gore. 2021. Benefits of adding camelina to rainfed crop rotation in iran: a crop with high drought tolerance. Agrotechniques in Industrial Crops, 1 (2): 91-96.
20. Seleiman, M.F., N. Al-Suhaibani, N. Ali, M. Akmal, M. Alotaibi, Y. Refay, T. Dindaroglu, H.H. Abdul-Wajid and M. Leonardo Battaglia.2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10 (259): 1-25. [
DOI:10.3390/plants10020259]
21. Seyedi, S.J., A. Nabipour and S. Vazan. 2013. Defining selection indices for drought tolerance in chickpea under terminal drought stresses. Journal of Crop Breeding, 5(11): 98-114 (In Persian).
22. Shibanirad, A., E. Farshadfar and A. Najafi. 2018. Evaluation of drought stress tolerance in some bread wheat genotypes using drought tolerance indices. Plant Ecophysiology (Arsanjan Branch), 9(31): 1-14 (In Persian).
23. Tahmasebi, S., M. Dastfal, H. Zali and M. Rajaie. 2018. Drought tolerance evaluation of bread wheat cultivars and promising lines in warm and dry climate of the south. Cereal Research, 8(2): 209-225 (In Persian).
24. Wayssimallamiri, A., R. Haghparast, M. Aghaeisabarzeh, E. Farshadfar and R. Rajabi. 2011. Evaluation of drought tolerance of barley (Hordeum vulgare L.) genotypes using physiological characteristics and drought tolerance indices. Seed and plant Improvement Journal, 26-1(1): 43-60 (In Persian).
25. Yaghotipoor, A., E.A. Farshadfar and M. Saeidi. 2017. Evaluation of drought tolerance in bread wheat genotypes using new mixed method. Environmental Stresses in Crop Sciences, 10(2): 247-256 (In Persian).
26. Zali, H., O. Sofalian, T. Hasanloo and A. Asgharii. 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: introduction of new method. Biological Forum-An International Journal, 7(2): 703-711.
27. Zali, H., T. Hasanloo, O. Sofalian, A. Asgharii and M. Enayati Shariatpanahi. 2019. Identifying drought tolerant canola genotypes using selection index of ideal genotype. Journal of Crop Breeding, 11(29): 117-126 (In Persian). [
DOI:10.29252/jcb.11.29.117]
28. Zali, H. and A. Barati. 2020. Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding, 12(34): 93-104 (In Persian). [
DOI:10.29252/jcb.12.34.93]
29. Zali, H., A. Barati and A. Jabari. 2022. Using Selection Index of Ideal Genotype (SIIG) in Selection of Barley Promising Lines. Agricultural Science and Sustainable Production, 32(1): 293-308 (In Persian).
30. Zanetti, F., A. Alberghini, A. Marjanović Jeromela, N. Grahovac, D. Rajković, B. Kiprovski and A. Monti. 2021. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. a review. Agronomy for Sustainable Development, 41(2): 1-18. [
DOI:10.1007/s13593-020-00663-y]