دوره 14، شماره 44 - ( زمستان 1401 )                   جلد 14 شماره 44 صفحات 64-56 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sahraei Ghamesh F, Navabpour S, Yamchi A, Mazandarani A. (2022). Evaluation of Proline Amount, Yield and Expression of Genes Involved in Drought Stress in Maize Cultivars. jcb. 14(44), 56-64. doi:10.52547/jcb.14.44.56
URL: http://jcb.sanru.ac.ir/article-1-1360-fa.html
صحرایی قمش فاطمه، نواب پور سعید، یامچی احد، مازندرانی ابوالفضل. بررسی میزان پرولین، عملکرد دانه و بیان ژن های دخیل در تحمل به تنش خشکی در ارقام هیبرید ذرت پژوهشنامه اصلاح گیاهان زراعی 1401; 14 (44) :64-56 10.52547/jcb.14.44.56

URL: http://jcb.sanru.ac.ir/article-1-1360-fa.html


گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
چکیده:   (1175 مشاهده)
چکیده مبسوط
مقدمه و هدف: تنش خشکی یکی از تنشهای محیطی مهم است که عملکرد دانه ذرت را در دنیا و ایران کاهش میدهد. وقوع تنش خشکی در مزارع امری اجتناب ناپذیر است. برای حل این مشکل راهکارهای فراوانی پیشنهاد شده است که یکی از مهم ترین آنها وجود رقم مناسب و متحمل به تنش خشکی است.
مواد و روش‌ها: آزمایشی به صورت کرتهای خرد شده در قالب طرح بلوکهای کامل تصادفی در سه تکرار در شرایط مزرعه اجرا شد. تنش خشکی به عنوان عامل اصلی در سه سطح: 75±5 میلی‏ متر تبخیر از طشتک تبخیر کلاس A (تیمار بدون تنش یا شاهد)، آبیاری پس از 5±115 میلی ‏متر تبخیر (تنش متوسط) و آبیاری پس از 5±140 میلی‏متر تبخیر (تنش شدید) و هیبریدهای ذرت (شامل سینگل کراس 704 به­عنوان شاهد، کارون و مبین) به­ عنوان عامل فرعی در نظر گرفته شدند. نمونه­ برداری برای ارزیابی بیان ژنها در سه مرحله 4 برگی، گرده افشانی و 10 روز بعد از گرده افشانی انجام و بیان ژنهای ZmAN13، ZmSOD3، CAT2 و ZmMET1 مورد ارزیابی قرار گرفت. در زمان برداشت نیز مقدار پرولین و عملکرد دانه اندازه­گیری گردید.
یافته‌ها: نتایج ارزیابی بیان ژن­ها حاکی از افزایش بیشتر بیان ژن های کاتالاز و سوپر اکسیداز تحت تنش متوسط و افزایش بیان ژن­های متالوتیونین و ZmAN13 در تنش های شدید  نسبت به شاهد بود. در بین ارقام مورد بررسی رقم کارون در تمامی مراحل ارزیابی هم در شرایط تنش متوسط و هم در تنش شدید برای ژنهای مورد مطالعه نسبت به شاهد افزایش بیان نشان داد. با اندازه گیری میزان پرولین نیز مشخص شد که ارقام تحت تنش متوسط پرولین بالاتری داشتند و رقم کارون بالاترین مقدار پرولین را نسبت به سایر ارقام داشت. همچنین عملکرد دانه ارقام تحت تنش خشکی نسبت به شاهد کاهش معنی داری  نشان داد. در این میان رقم سینگل کراس 704 با 3/9 تن در هکتار کمترین عملکرد دانه را داشت که اختلاف آن با رقم مبین معنی­دار نگردید و رقم کارون با عملکرد دانه 5/02 تن در هکتار بالاترین عملکر دانه را تحت تنش شدید دارا بود.
نتیجه‌گیری: به­طور کلی نتایج نشان داد که تحت تنش خشکی رقم کارون عملکرد دانه بالاتری نسبت به دو رقم دیگر داشت که بیانگر تحمل این رقم نسبت به خشکی بود.
واژه‌های کلیدی: بیان ژن، پرولین، تنش خشکی، ذرت
متن کامل [PDF 995 kb]   (600 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1400/12/24 | ویرایش نهایی: 1401/10/10 | پذیرش: 1401/2/27 | انتشار: 1401/10/11

فهرست منابع
1. Afarinesh, A., G. Fathi, R. Chugan, S.A. Syadat, G. Alamisaid and S.R. Ashrafizadeh. 2016. Effect of drought stress on physiological traits of maize (Zea mays L.) hybrids. Isfahan University of Technology-Journal of Crop Production and Processing, 5(18): 195-205. [DOI:10.18869/acadpub.jcpp.5.18.195]
2. Anjum, S.A., U. Ashraf, M. Tanveer, I. Khan, S. Hussain, B. Shahzad, A. Zohaib, F. Abbas, M.F. Saleem and I. Ali. 2017. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Science, 8: 69-87. [DOI:10.3389/fpls.2017.00069]
3. Ashraf, M. 2010. Inducing drought tolerance in plants: some recent advances. Biotechnology Advances, 28:169-183. [DOI:10.1016/j.biotechadv.2009.11.005]
4. Ashraf, M. and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
5. Azizi, F. and A. Mahrokh. 2013. Evaluation of Drought Tolerance indices in different Sweet Corn Hybrids. Journal of Crops Improvement, 15(1): 1-13 (In Persian).
6. Badr, A., H.H. El-Shazly, R.A. Tarawneh and A. Börner. 2020. Screening for Drought Tolerance in Maize (Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions. Plants, 9: 565-588. [DOI:10.3390/plants9050565]
7. Bates, S., R.P. Waldern and E.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soli, 39: 205-207. [DOI:10.1007/BF00018060]
8. Chávez-Arias, C.C., G.A. Ligarreto-Moreno, A. Ramírez-Godoy and H. Restrepo-Díaz. 2021. Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: A Physiological, Biochemical and Molecular View. Frontiers in Plant Science, 12: 1-14. [DOI:10.3389/fpls.2021.702841]
9. Chugh, V., N. Kaur and A.K. Gupta. 2011. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. Indian Journal of Biochemistry and Biophysics, 48: 47-53.
10. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909- 930. [DOI:10.1016/j.plaphy.2010.08.016]
11. Habibi, D., M. Mashdi Akbar Boojar, A. Mahmoudi, M.R. Ardakani and D. Taleghani. 2004. Antioxidative enzyme in sunflower subjected to drought stress. 4th International Crop Science Congress, 1-4 pp.
12. Habu, Y., T. Kakutani and J. Paszkowski. 2001. Epigenetic developmental mechanisms in plants: molecules and targets of plant epigenetic regulation. Curr. Opin. Genet. Dev, 11: 215-220. [DOI:10.1016/S0959-437X(00)00182-9]
13. Jiang, M. and J. Zhang. 2002. Water stress -induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 53: 2401-2410. [DOI:10.1093/jxb/erf090]
14. Jin, Y., M. Wang, J. Fu, N. Xuan, Y. Zhu, Y. Lian and G. Wang. 2007. Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics, 90(2): 265-275. [DOI:10.1016/j.ygeno.2007.03.019]
15. Jitesh, M.N., S.R. Prashanth, K.R. Sivaprakash and A.K. Parid. 2016. Antioxidative response mechanisms in halophytes: their role in stress defense. Journal of Genetics, 85: 237-254. [DOI:10.1007/BF02935340]
16. Khalili, M., M. Moghaddam, H. Kazemi Arbat, M.R. Shakiba, H. Kanooni and R. Choghan. 2009. Effect of Drought Stress on Different Maize Genotypes. Journal of Agricultural Science and Sustainable Production, 20(2): 67-84 (In Persian).
17. Kiraly, I. and P. Czovek. 2002. Changes of MDA level and O2 scavenging enzyme activites in wheat varieties as a result of PEG treatment. Proceeding of the 7th Hungarian on Plant Physiology, 46: 105-106.
18. Lak, S., A. Naderi, S.A. Syadat, A. Ainehband and G. Normohamadi. 2008. Effects of water deficit on yield and nitrogen efficiency of corn hybrids grown at different levels of nitrogen and plant 704. Journal of Agricultural Sciences and Natural Resources, 4(2): 153-170 (In Persian).
19. Mackerness, S.A.H., C.F. John, B. Jordan and B. Thomas. 2001. Early signaling components in ultraviolet B responses. distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett, 489: 237-242. [DOI:10.1016/S0014-5793(01)02103-2]
20. Marques, T.L., R.G.V. Pinho, V. Édila de R.V. Paniago, B. da, C. Paniago, N.C. Freitas and H.O. Santos. 2019. Physiological analysis and gene expression analysis of ZmDBP3, ZmALDH9, ZmAN13, and ZmDREB2A in maize lines. Acta Scientiarum. Agronomy, 42(1): e43479. [DOI:10.4025/actasciagron.v42i1.43479]
21. Mazandarani, A., M. Rahim Malek, S. Navabpour and S. Ramezanpour. 2014. Evaluation of Chlorophyll Content and Genes Expression (Catalase and DREB1) in Soybean Cultivars Under Drought Stress Condition. Agricultural Biotechnology, 5(1): 45-58.
22. Mckersie, B.D. 2004. Oxidative stress. Dept of Crop Science, University of Guelph, [online]. http: //www. Oxidative stress. Htm [15 Dec 2004]. [DOI:10.1007/978-94-017-3093-8_2]
23. Molla, S., P. Villar-Salvador, P. Garcia-Fayos and J.L. Rubira. 2006. Physiological and transplanting performance of Quercus ilex L. (holm oak) seedlings grown in nurseries with different winter conditions. Forest Ecology and Management, 237: 218-226. [DOI:10.1016/j.foreco.2006.09.047]
24. Moohamadi Behmadi, M. and M. Armin. 2017. Effect of drought stress on yield and yield components of different corn cultivars in delayed planting conditions, 4(1):17-34.
25. Nelissen, H., X. Sun, B. Rymen, Y. Jikumaru, M. Kojima, Y. Takebayashi, R. Abbeloos, K. Demuynck, V. Storme and M. Vuylsteke. 2017. The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Plant Biotechnol Journal, 16(2): 615-27. [DOI:10.1111/pbi.12801]
26. Shenawa, M.H. and A.O. Alfalahi. 2021. Enzymatic Regulation of Drought and Heat Stresses in Maize (Zea mays L.). IOP Conf. Ser.: Earth Environ Science, 904 012058. [DOI:10.1088/1755-1315/904/1/012058]
27. Yuan, J., D. Chen, Y. Ren, X. Zhang and J. Zhao. 2008. Characteristic and expression analysis of a metallothionein gene, OsMT2b, downregulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol, 146(4): 1637-1650. [DOI:10.1104/pp.107.110304]
28. Zhang, X., L. Lei, J. Lai, H. Zhao and W. Song. 2018. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1): 68. [DOI:10.1186/s12870-018-1281-x]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb