دوره 14، شماره 42 - ( تابستان 1401 )                   جلد 14 شماره 42 صفحات 116-106 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Teymouri Rad L, Fayaz Moghaddam A, Abdollahi Mandoulakani B, Wehbi E. (2022). Expression pattern of genes encoding bZIP56, WRKY1 and NAM-B1 transcription factors under Zn deficiency conditions in bread wheat (Triticum aestivum L.). jcb. 14(42), 106-116. doi:10.52547/jcb.14.42.106
URL: http://jcb.sanru.ac.ir/article-1-1284-fa.html
تیموری راد لیلا، فیاض مقدم امیر، عبدالهی مندولکانی بابک، وهبی اسماعیل. الگوی بیان ژن های کد کننده عوامل رونویسی bZIP56،WRKY1 و NAM-B1 تحت شرایط کمبود روی در گندم نان (Triticum aestivum L.) پژوهشنامه اصلاح گیاهان زراعی 1401; 14 (42) :116-106 10.52547/jcb.14.42.106

URL: http://jcb.sanru.ac.ir/article-1-1284-fa.html


گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه
چکیده:   (1351 مشاهده)
چکیده مبسوط
مقدمه و هدف: گندم نان (Triticum aestivum L.) یکی از مهم­ترین محصولات اصلی تغذیه ­ای در جهان است. با وجود تلاش ­ها در جهت بهبود کیفیت گندم، سطح ریزمغذی­ه ای آن هنوز پایین­ تر از حد مطلوب برای تغذیه انسان قرار دارد. به ویژه کمبود روی (Zn) یک مشکل گسترده تغذیه­ ای  در کشورهایی است که به ­طور عمده به رژیم غذایی وابسته به غلات متکی می­ باشند. بنابراین تحقیق حاضر به منظور مطالعه و بررسی الگوی بیان ژن­ های کدکننده عوامل رونویسی bZIP56، WRKY1 و NAM-B1 تحت شرایط کمبود روی در گندم نان اجرا شد.
مواد و روش‌ها: در این تحقیق، دو رقم گندم هامون (روی-کارا) و هیرمند (روی-ناکارا) در شرایط کمبود و کفایت روی ( به ترتیب صفر و پنج میلی­ گرم روی در کیلوگرم) خاک کشت و نمونه­ برداری از برگ و ریشه گیاهان در دو مرحله 30 روز بعد از جوانه­ زنی (رویشی) و 30 درصد گلدهی (زایشی) انجام گرفت و بیان نسبی ژن­های کد کننده عوامل رونویسی فوق الذکر  در شرایط کمبود روی نسبت به شرایط کفایت آن با استفاده از روش Real time PCR مورد ارزیابی قرار گرفت.
یافته‌ها: نتایج نشان داد که بیش­ترین میزان افزایش بیان نسبی ژن­های bZIP56 (بیش از 77 برابر کنترل) و WRKY1 (بیش از 20 برابر کنترل)، در ریشه رقم روی-کارا (هامون) در مرحله زایشی مشاهده شد. همچنین میزان بیان هر دو ژن در برگ رقم هامون در مرحله رویشی نیز بطور قابل توجهی نسبت به گیاهان شاهد افزایش یافت. بیشترین میزان بیان نسبی ژن کد کننده عامل رونویسی NAM-B1 (بیش از 54 برابر کنترل) در برگ رقم روی‌-ناکارای هیرمند در مرحله زایشی مشاهده شد. همچنین میزان بیان این ژن در ریشه و برگ رقم روی-کارای هامون به ترتیب در مراحل زایشی و رویشی بطور قابل توجهی نسبت به گیاهان شاهد افزایش یافت.
نتیجه‌گیری: بطور کلی با توجه به افزایش بیان نسبی رونوشت­ های هر سه ژن کد کننده عوامل رونویسی مورد مطالعه در مرحله زایشی در ریشه رقم
روی-کارا، احتمالا هر سه ژن در فعال سازی و القای رونوشت برداری ژن­های دخیل در جذب روی در ریشه در شرایط کمبود روی در انتهای دوره رشدی مشارکت دارند
. بنابراین می­ توان از این ژن­ ها در در برنامه ­های اصلاحی بهبود کیفیت دانه و غنی سازی زیستی گندم نان برای تولید ارقام روی-کارا استفاده کرد.  


 
متن کامل [PDF 1003 kb]   (852 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: 1400/5/11 | ویرایش نهایی: 1401/5/15 | پذیرش: 1400/9/23 | انتشار: 1401/5/21

فهرست منابع
1. Ahmadi-Niari, A., A. Faramarzi and D. Hassanpanah. 2013. Evaluation of drought tolerance indices for screening bread wheat genotypes in drought stress conditions. Journal of Engineering and Alied Sciences, 3(1): 23-27 (In Persian).
2. Alloway, B.J. 2008. Micronutrients and Crop Production: An Introduction, in Micronutrient Deficiencies in Global Crop Production. Springer Netherlands, pp: 1-39. [DOI:10.1007/978-1-4020-6860-7_1]
3. Asplund, L., G. Bergkvist, M.W. Leino, A. Westerbergh and M.Weih. 2013. Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content. PloS One, 8(3): e59704. [DOI:10.1371/journal.pone.0059704]
4. Assuncao, A.G., D.P. Persson, S. Husted, J.K. Schjørring, R.D. Alexander and M.G. Aarts. 2013. Model of how plants sense zinc deficiency. Metallomics, 5(9): 1110-1116. [DOI:10.1039/c3mt00070b]
5. Assuncao, A.G., E. Herrero, Y.F. Lin, B. Huettel, S. Talukdar, C. Smaczniak, R.G. Immink, M. Van Eldik, M. Fiers, H. Schat and M.G. Aarts. 2010. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences, 107(22): 10296-10301. [DOI:10.1073/pnas.1004788107]
6. Bouain, N., S.B. Satbhai, A. Korte, C. Saenchai, G. Desbrosses, P. Berthomieu and H. Rouached. 2018. Natural allelic variation of the AZI1 gene controls root growth under zinc-limiting condition. Public Library of Science Genetics, 14(4): e1007304.‌ [DOI:10.1371/journal.pgen.1007304]
7. Brevis, J.C., C.F. Morris, F. Manthey and J. Dubcovsky. 2010. Effect of the grain protein content locus Gpc-B1 on bread and pasta quality. Journal of Cereal Science, 51(3): 357-365. [DOI:10.1016/j.jcs.2010.02.004]
8. Bustin, S.A. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25(2): 169-193. [DOI:10.1677/jme.0.0250169]
9. Caffagni, A., N. Pecchioni, E. Francia, D. Pagani and J. Milc. 2014. Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biologia Plantarum, 58(2): 283-295. [DOI:10.1007/s10535-014-0403-z]
10. Colangelo, E.P. and M.L. Guerinot. 2006. Put the metal to the petal: metal uptake and transport throughout plants. Current Opinion in Plant Biology, 9(3): 322-330.‌ [DOI:10.1016/j.pbi.2006.03.015]
11. Cole, C.R., F.K. Grant, E.D. Swaby-Ellis, J.L. Smith, A. Jacques, C.A. Northrop-Clewes and T.R. Ziegler. 2010. Zinc and iron deficiency and their interrelations in low-income African American and Hispanic children in Atlanta. Journal of Clinical Nutrition, 91(4): 1027-1034. [DOI:10.3945/ajcn.2009.28089]
12. Distelfeld, A., R. Avni and A.M. Fischer. 2014. Senescence, nutrient remobilization, and yield in wheat and barley. Journal of Experimental Botany, 65(14): 3783-3798. [DOI:10.1093/jxb/ert477]
13. Evens, N.P., P. Buchner, L.E. Williams and M.J. Hawkesford. 2017. The role of ZIP transporters and group F bZIP transcription factors in the Zn‐deficiency response of wheat (Triticum aestivum). The Plant Journal, 92(2): 291-304. [DOI:10.1111/tpj.13655]
14. Ghasemi, S., A.H. Khoshgoftarmanesh, B.E. Sayed-Tabatabaei and G. Khaksar. 2015. Expression level of ZIP1 and ZIP5 transporters in root and leaves of three different zinc-efficiency wheat cultivars. Journal of Plant Process and Function, 4(11): 23-32 (In Persian).
15. Graham, R.D. and Z. Rengel. 1993. Genotypic variation in Zn uptake and utilization by plants. In: Robson, A. D. (Ed). Zinc in soils and plants. Kluwer Academic Publishers, p: 107-114. [DOI:10.1007/978-94-011-0878-2_8]
16. Guo, Y. and S. Gan. 2006. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. The Plant Journal, 46(4): 601-612.‌ [DOI:10.1111/j.1365-313X.2006.02723.x]
17. Hacisalihoglu, G., J.J. Hart, Y.H. Wang, I. Cakmak and L.V. Kochian. 2003. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiology, 131(2): 595-602. [DOI:10.1104/pp.011825]
18. Hwang, I., H.J. Jung, J.I. Park, T.J. Yang and I.S. Nou. 2014. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response. Genomics, 104(3): 194-202. [DOI:10.1016/j.ygeno.2014.07.008]
19. Kalayci, M., B. Torun, S. Eker, M. Aydin, L. Ozturk and I. Cakmak. 1999. Grain yield, zinc efficiency and zinc concentration of wheat genotypes grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crops Research, 63(1): 87-98. [DOI:10.1016/S0378-4290(99)00028-3]
20. Kambe, T., Y. Yamaguchi-Iwai, R. Sasaki and M. Nagao. 2004. Overview of mammalian zinc transporters. Cellular and Molecular Life Sciences, 61(1): 49-68.‌ [DOI:10.1007/s00018-003-3148-y]
21. Kasirajan, L., K. Boomiraj and K.C. Bansal. 2013. Optimization of genetic transformation protocol mediated by biolistic method in some elite genotypes of wheat (Triticum aestivum L.). African Journal of Biotechnology, 12(6): 531-538.
22. Khezri, G., Z. Shobbar and A. Naji. 2016. In silico analysis of the WRKY transcription factors gene family in wheat. Agricultural biotechnology. Agricultural Research, 14(2): 39-44.
23. Khoshgoftarmanesh, A.H., H.R. Sharifi, D. Afiuni and R. Schulin. 2012. Classification of wheat genotypes by yield and densities of grain zinc and iron using cluster analysis. Journal of Geochemical Exploration, 121: 49-54‌ (In Persian). [DOI:10.1016/j.gexplo.2012.06.002]
24. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402-408. [DOI:10.1006/meth.2001.1262]
25. Mahmoudi Malhamlu, F. and B. Abdollahi Mandoulakani. 2019. Enhanced expression of superoxide dismutase, phenylalanine ammonia-lyase and bZIP33 transcription factor encoding genes under Zn deficiency conditions in bread wheat (Triticum aestivum L.). Cereal Research, 9(1): 17-26 (In Persian).
26. Mirzamasoumzadeh, B., S. Ghalichechi, M. Salami, M. Karimi and A. Baghal Mohseni. 2013. The study of wheat genotypes is planted in Ardabil using multivariate statistical methods. International Journal of Farming and Allied Sciences, 2(8): 188-189 (In Persian).
27. Nakabayashi, R. and K. Saito. 2015. Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology, 24: 10-16. [DOI:10.1016/j.pbi.2015.01.003]
28. Nazri, A.Z., J.H. Griffin, K.A. Peaston, D.G. Alexander‐Webber and L.E. Williams. 2017. F‐group bZIPs in barley-a role in Zn deficiency. Plant, Cell and Environment, 40(11): 2754-2770. [DOI:10.1111/pce.13045]
29. Parveen, S., R.K. Ranjan, A. Anand and B. Singh. 2018. Combined deficiency of nitrogen and iron increases senescence induced remobilization of plant immobile iron in wheat. Acta Physiologiae Plantarum, 40(12): 211. [DOI:10.1007/s11738-018-2782-9]
30. Pearce, S., F. Tabbita, D. Cantu, V. Buffalo, R. Avni, H. Vazquez-Gross and J. Dubcovksy. 2014. Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BioMed Central Plant Biology, 14(1): 368. [DOI:10.1186/s12870-014-0368-2]
31. Pearson, J.N. and Z. Rengel. 1997. 10. Mechanisms of plant resistance to nutrient deficiency stress. Mechanisms of Environmental Stress Resistance in Plants, 213 pp. [DOI:10.1201/9780203747803-10]
32. Peleg, Z., Y. Saranga, A.M. Yazici, T. Fahima, L. Ozturk and I. Cakmak. 2008. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil, 306(1): 57-67. [DOI:10.1007/s11104-007-9417-z]
33. Rahimi Jarihani, L. and B. Abdollahi Mandoulakani. 2021. Expression pattern of catalase, ascorbate peroxidase and polyphenol oxidase encoding genes under soil Zn deficiency in bread wheat. Cellular and Molecular Researches (Iranian Journal of Biology), 34(1): 105-116 (In Persian).
34. Podzimska-Sroka, D., C. O'Shea, P.L. Gregersen and K. Skriver. 2015. NAC transcription factors in senescence: from molecular structure to function in crops. Plants, 4(3): 412-448. [DOI:10.3390/plants4030412]
35. Rengel, Z. and R.D. Graham. 1995. Importance of seed Zn content for wheat growth on Zn-deficient soil. Plant and Soil, 173(2): 259-266. [DOI:10.1007/BF00011463]
36. Rushton, P.J., I.E. Somssich, P. Ringler and Q.J. Shen. 2010. WRKY transcription factors. Trends in Plant Science, 15(5): 247-258. [DOI:10.1016/j.tplants.2010.02.006]
37. Sadeghzadeh, B., L. Ghodsizad, N. Sadeghzadeh, I. Sepehr and M. Feizi. 2021. Cereal breeding for zinc deficiency and its importance to alleviate drought stress. Journal of Crop Breeding, 13(37), 22-40 (In Persian).
38. Shahbazi, K. and H. Besharati. 2013. Overview of agricultural soil fertility status of Iran. Journal of Land Management, 1(1): 1-15 (In Persian).
39. Sinclair, S.A., T. Senger, I. N. Talke, C.S. Cobbett, M.J. Haydon and U. Kraemer. 2018. Systemic upregulation of MTP2-and HMA2-mediated Zn partitioning to the shoot supplements local Zn deficiency responses. The Plant Cell, 30(10): 2463-2479. [DOI:10.1105/tpc.18.00207]
40. Taylor, K.M., H.E. Morgan, A. Johnson and R.I. Nicholson. 2004. Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochemical Journal, 377(1): 131-139.‌ [DOI:10.1042/bj20031183]
41. Uauy, C., A. Distelfeld, T. Fahima, A. Blechl and J. Dubcovsky. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314(5803): 1298-1301. [DOI:10.1126/science.1133649]
42. Van De Mortel, J.E., H. Schat, P.D. Moerland, E.V.L. Van Themaat, S.J.O.E.R.D. Van Der Ent, H. Blankestijn, A. Ghandilyan and M.G. AARTS. 2008. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd‐hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment, 31(3): 301-324. [DOI:10.1111/j.1365-3040.2007.01764.x]
43. Waters, B.M., C. Uauy, J. Dubcovsky and M.A. Grusak. 2009. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 60(15): 4263-4274. [DOI:10.1093/jxb/erp257]
44. Wehbi, E. and B. Abdollahi Mandoulakani. 2021. Expression pattern of NAS1, NAS2 and NAS3 genes under Zn deficiency conditions in bread wheat (Triticum aestivum L.). Journal of Crop Breeding, 12(36): 171-17 (In Persian).
45. Yan, J.Y., C.X. Li, L. Sun, J.Y. Ren, G.X. Li, Z.J. Ding and S.J. Zheng. 2016. A WRKY transcription factor regulates Fe translocation under Fe deficiency. Plant Physiology, 171(3): 2017-2027. [DOI:10.1104/pp.16.00252]
46. Zhu, B., D.A. Huo, X.X. Hong, J. Guo, T. Peng, J. Liu, X.L. Huang, H.Q. Yan, Q.B. Weng, X.C. Zhang and X.Y. Du. 2019. The Salvia miltiorrhiza NAC transcription factor SmNAC1 enhances zinc content in transgenic Arabidopsis. Gene, 688: 54-61. [DOI:10.1016/j.gene.2018.11.076]
47. Zohary, D. and M. Hopf. 2000. Domestication of plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford University Press, 33 pp.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb