1. Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advance, 27: 84-93. [
DOI:10.1016/j.biotechadv.2008.09.003]
2. Aliu, S., I. Rusinovci, S. Fetahu, B. Gashi, E. Simeonovska and L. Rozman. 2015. The effect of salt stress on the germination of maize (Zea mays L.) seeds and photosynthetic pigments. Acta Agriculturae Slovenica, 105: 85-94. [
DOI:10.14720/aas.2015.105.1.09]
3. Akram, M., A. Malik, Y. Asfraf, F. Saleem and M. Hussain. 2007. Competitive seedling growth and K+/Na+ ration different maize (Zea mays L.) hybrids under salinity stress. Pakistan Journal of Botany, 39(7): 2553-2563.
4. Carpici, E.B., N. Celik, G. Bayram and B.B Asik. 2010. The effects of salt stress on the growth, biochemical parameter and mineral element content of some maize (Zea mays L.) cultivars. African Journal of Biotechnology, 9(41): 6937-6942.
5. Chaum, S. and C. Kirdmanee. 2010. Salt tolerance screening in six maize (Zea mays L.) genotypes using multivariate cluster analysis. Philippine Agricultural Scientis, 93: 156-164.
6. FAO, 2019. http://www.fao.org/faostat/en/#data/QC/visualize.
7. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909-930. [
DOI:10.1016/j.plaphy.2010.08.016]
8. Jiang, C., C. Zu, D. Lu, Q. Zhu, J. Shen, H. Wang and D. Li. 2017. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 7: 1-14 (42039). [
DOI:10.1038/srep42039]
9. Mansour, M.M.F., K.H.A. Salama, F.Z.M. Ali and A.F. Abou Hadid. 2005. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. General and Applied Plant Physiology, 31: 29-41.
10. Menezes-Benavente, L., S.P. Kernodle, M. Margis-Pinheiro and J.G. Scandalios. 2004. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Communications in Free Radical Research, 9: 29-36. [
DOI:10.1179/135100004225003888]
11. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410. [
DOI:10.1016/S1360-1385(02)02312-9]
12. Molazem. D. and A. Bashirzadeh. 2017. Investigation of the antioxidant enzymes and proline in varieties of maize (Zea mays L.) under salinity stress. Journal of Molecular and Cellular Research, 1: 77-90 (In Persian).
13. Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment, 25: 239-250. [
DOI:10.1046/j.0016-8025.2001.00808.x]
14. Nematpour, A., S.A. Kazemeini and M. Edalat. 2015. Effect of salinity on some growth and physiological characteristics of two cultivars of sweet corn (Zea mays var. saccharata). Plant Production Technology, 7(2): 153-165 (In Persian).
15. Omrani. B. and S. Moharramnejad. 2018. Study of salinity tolerance in four maize (Zea mays L.) hybrids at seedling stage. Journal of Crop Breeding, 9: 79-86 (In Persian). [
DOI:10.29252/jcb.9.24.79]
16. Tuna, A.L., C. Kaya, H. Altunlu and M. Ashraf. 2013. Mitigation effects of non-enzymatic antioxidants in maize (Zea mays L.) plants under salinity stress. Australian Journal of Crop Science, 7(8): 1181-1188.
17. Yaryura. P., G. Cordon, M. Leon, N. Kerber, N. Pucheu, N. Rubio, G. Garc and G. Lagorio. 2009. Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.). Journal of Agronomy and Crop Science, 195: 186-196. [
DOI:10.1111/j.1439-037X.2008.00359.x]