دوره 13، شماره 38 - ( تابستان 1400 )                   جلد 13 شماره 38 صفحات 94-84 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghaei Dargiri S, Samsampoor D, Askari Seyahooei M, Bagheri A. (2021). The Role of the Fungal Endophyte Penicillium Chrysogenum in Tomato Plant underSalinity Stress. jcb. 13(38), 84-94. doi:10.52547/jcb.13.38.84
URL: http://jcb.sanru.ac.ir/article-1-1197-fa.html
آقائی درگیری سهیلا، صمصام پور داود، عسکری سیاهویی مجید، باقری عبدالنبی. نقش قارچ اندوفیت Penicillium chrysogenum در گیاه گوجه‌فرنگی تحت تنش شوری پژوهشنامه اصلاح گیاهان زراعی 1400; 13 (38) :94-84 10.52547/jcb.13.38.84

URL: http://jcb.sanru.ac.ir/article-1-1197-fa.html


گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه هرمزگان، بندرعباس، ایران
چکیده:   (2093 مشاهده)
    شوری یکی از مهم‌ترین تنش‌های غیر زیستی است که می‌تواند اثرات مخرب شدیدی روی رشد گیاهان داشته باشد. در این پژوهش تاثیر قارچ اندوفیت Penicillium chrysogenum روی بهبود صفات کمی و بیوشیمیایی گیاه گوجه‌فرنگی تحت تنش شوری (تیمار آب چاه شور با غلظت‌های مختلف صفر، 4، 6 و 8 دسی‌زیمنس بر متر) به صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار در گلخانه دانشگاه هرمزگان بررسی شد. صفات مورد مطالعه شامل ارتفاع گیاه، وزن خشک ریشه، غلظت رنگدانه‌ها، محتوای نسبی آب برگ، پرولین، قندهای محلول، مالون دی‌آلدئید و پراکسید هیدروژن بود. نتایج نشان داد که گرچه تنش شوری باعث کاهش معنی‌دار ارتفاع گیاه، وزن خشک ریشه، کلروفیل a، کلروفیل b، کلروفیل کل، کاروتنوئید و محتوای نسبی آب برگ شد؛ اما تلقیح بوته‌های گوجه‌فرنگی با اندوفیت، باعث افزایش معنی‌دار این صفات و تقلیل اثرات منفی تنش شوری شد. حضور اندوفیت در برابر عدم حضور آن در تنش شوری (8 دسی‌زیمنس بر متر) به میزان 26/66، 30/43، 21/72 و 8/47 درصد به ترتیب باعث افزایش صفات پرولین، قندهای محلول، مالون دی‌آلدئید و پراکسید هیدروژن شد. نتایج موجود نشان از پتانسیل بالای قارچ اندوفیت Penicillium chrysogenum در افزایش رشد به ویژه در شرایط تنش شوری دارد. از این قابلیت می‌توان در کاهش محدودیت کشت در برخی مناطق به دلیل لب شور بودن آب استفاده کرد.
متن کامل [PDF 1256 kb]   (781 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1399/10/15 | ویرایش نهایی: 1400/5/8 | پذیرش: 1400/2/29 | انتشار: 1400/5/7

فهرست منابع
1. Abd-Allah, E.F., A. Hashem, A.A. Alqarawi and A. Alwathnani Hend. 2015. Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi. Pakistan Journal. Botany, 47: 785-795.
2. Abdelaziz, M., E. Abdelsattar, M. Emad A. Abdeldaym, A.M. Atia, M. Abdel Wahab, M.M.Maged, M. Saad and H Heribert. 2019. "Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress." Journal Scientia Horticulturae 256: 108-532. [DOI:10.1016/j.scienta.2019.05.059]
3. Abeer, H., E.F. Abd-Allah, A.A. Alqarawi, G. El-Didamony, M. Alwhibi, D. Egamberdieva, and P. Ahmad. 2014. Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pakistan Journal. Botany, 46: 2003-2013.
4. Ahmad, P., A. Hashem, E.F. Abd-Allah, A.A. Alqarawi, R. John, D. Egamberdieva and S. Gucel. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Journal Frontiers in plant science, 6: 868. [DOI:10.3389/fpls.2015.00868]
5. Alqarawi, A.A., E.F. Abd Allah and A. Hashem. 2014. Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. Journal of Plant Interactions, 9: 802-810. [DOI:10.1080/17429145.2014.949886]
6. Aasegawa, P.M., R.A. Bressan, J.K. Zhu and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Journal Annual review of plant biology, 51: 463-499. [DOI:10.1146/annurev.arplant.51.1.463]
7. Ashraf, M. and Q. Ali. 2008. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Journal of Environmental and experimental Botany, 63: 266-273. [DOI:10.1016/j.envexpbot.2007.11.008]
8. Azad, K. and S. Kaminskyj. 2016. A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis, 68: 73-78. [DOI:10.1007/s13199-015-0370-y]
9. Bandyopadhyay, U., D. Das and R.K. Banerjee. 1999. Reactive oxygen species: oxidative damage and pathogenesis. Journal of Current science, pp: 658-666.
10. Bartels, D. and R. Sunkar. 2005. Drought and salt tolerance in plants. Crit. Rev.Journal Plant science . 24: 23-58. [DOI:10.1080/07352680590910410]
11. Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Journal Plant and soil, 39: 205-207. [DOI:10.1007/BF00018060]
12. Bilal, L., S. Asaf, M. Hamayun, H. Gul, A. Iqbal, I. Ullah, I.J. Lee and A. Hussain. 2018. Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis, 76: 117-127. [DOI:10.1007/s13199-018-0545-4]
13. Bu, N., X. Li, Y. Li, C. Ma, L. Ma and C. Zhang. 2012. Effects of Na2CO3 stress on photosynthesis and antioxidative enzymes in endophyte infected and non-infected rice. Ecotoxicology and environmental safety, 78: 35-40. [DOI:10.1016/j.ecoenv.2011.11.007]
14. Chaves, M.M., J. Flexas and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Journal Annals of botany, 103: 551-560. [DOI:10.1093/aob/mcn125]
15. Chen, T., C. Li, J.F. White and Z. Nan. 2019. Effect of the fungal endophyte Epichloë bromicola on polyamines in wild barley (Hordeum brevisubulatum) under salt stress. Journal Plant and Soil, 436: 29-48. [DOI:10.1007/s11104-018-03913-x]
16. Chen, T.H. and N. Murata. 2011. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Journal Plant, cell and environment, 34: 1-20. [DOI:10.1111/j.1365-3040.2010.02232.x]
17. Das, A., S. Kamal, N.A. Shakil, I. Sherameti, R. Oelmüller, M. Dua, N. Tuteja, A.K. Johri and A.Varma. 2012. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Journal Plant signaling and behavior, 7: 103-112. [DOI:10.4161/psb.7.1.18472]
18. Das, K. and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Journal Frontiers in Environmental Science, 2: 53. [DOI:10.3389/fenvs.2014.00053]
19. De Azevedo Neto, A.D., J.T. Prisco, J. Enéas-Filho, C.E.B. de Abreu and E. Gomes-Filho. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Journal Environmental and Experimental Botany, 56: 87-94. [DOI:10.1016/j.envexpbot.2005.01.008]
20. Deshmukh, S. R., P. Hückelhoven, J. Schäfer, M. Imani, M. Sharma, F. Weiss and K.H. Kogel. 2006. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of the National Academy of Sciences, 103: 18450-18457. [DOI:10.1073/pnas.0605697103]
21. FAOSTAT. 2020. Crops: tomatoes. http://www.fao. org/faostat/en/#data/QC, extracted on 9 August, 2019.
22. Farias, G.C., K.G. Nunes, M.A. Soares, K.A. de Siqueira, W.C. Lima, A.L.R. Neves, C.F. de Lacerda and E. Gomes Filho. 2020. Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Brazilian Journal of Microbiology, 51: 243-253. [DOI:10.1007/s42770-019-00173-4]
23. Gharsallah, C., H. Fakhfakh, D. Grubb and F. Gorsane. 2016. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. Journal AoB Plants. [DOI:10.1093/aobpla/plw055]
24. Ghorbani, A., H. Pirdashti and M. Ramezani. 2016. Effect of endophyte fungal symbiosis of Piriformospora india on morphological character and photosynthesis pigments in tomato (Solanum lycopersicum L.). New Cellular and Molecular Biotechnology Journal, 6: 57-64.
25. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Bioch. Biophy, 125: 189-198. [DOI:10.1016/0003-9861(68)90654-1]
26. Hussain, A.M., H, Rahman, A. Iqbal, M. Shah, M. Irshad, M. Qasim and B. Islam. 2018. Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Journal Chemosphere, 211: 653-663. [DOI:10.1016/j.chemosphere.2018.07.197]
27. Ibrahim, E.A. 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192: 38-46. [DOI:10.1016/j.jplph.2015.12.011]
28. Jan, F.G., M. Hamayun, A. Hussain, G. Jan, A. Iqbal, A. Khan and I.J. Lee. 2019. An endophytic isolate of the fung28. Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. Journal of BMC microbiology, 19: 1-10. [DOI:10.1186/s12866-018-1374-6]
29. Jarvis, P.G. and M.S. Jarvis. 1963. The water relations of tree seedlings. IV. Some aspects of the tissue water relations and drought resistance. Journal of Physiologia plantarum, 16: 501-516. [DOI:10.1111/j.1399-3054.1963.tb08327.x]
30. Jogawat, A., S. Saha, M. Bakshi, V. Dayaman, M. Kumar, M. Dua, A. Varma, R. Oelmüller, N. Tuteja and A.K. Johri. 2013. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Journal Plant signaling and behavior, 8:e26891. [DOI:10.4161/psb.26891]
31. Hosseini, M.S., D. Samsampour, M. Ebrahimi and M. Khanahmadi. 2019. Study of Physiological and Biochemical Changes of Iraninan Licorice (Glycyrrhiza Glabra) under Salinity Stress in Filed Condition. Journal of Crop Breeding, 11(29): 193-201 (In Persian). [DOI:10.29252/jcb.11.29.193]
32. Kalaji, H.M., M.D. Cetner, I.A. Samborska, I. Lukasik, A. Oukarroum, S. Rusinowski, S. Pietkiewicz, M. Świątek and P. Dąbrowski, 2016. Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, 48: 153-163. [DOI:10.1515/sggw-2016-0012]
33. Karimi, S., A. Yadollahi, R. Nazari-Moghadam, A. Imani and K. Arzani. 2012. In vitro screening of almond (Prunus dulcis (Mill.)) genotypes for drought tolerance. Journal Biol Environ Science, 6: 263-270.
34. Kaur, G. and B.J.B.P. Asthir. 2015. Proline: a key player in plant abiotic stress tolerance. Journal Biologia Plantarum, 59: 609-619. [DOI:10.1007/s10535-015-0549-3]
35. Khan, M.N., M.H. Siddiqui, F. Mohammad, M. Naeem and M.M.A. Khan. 2010. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Journal Acta Physiologiae Plantarum, 32: 121. [DOI:10.1007/s11738-009-0387-z]
36. Khare, E., J. Mishra and N.K. Arora. 2018. Multifaceted interactions between endophytes and plant: developments and prospects. Journal Frontiers in microbiology, 9: 2732. [DOI:10.3389/fmicb.2018.02732]
37. Khodavirdivand, K.R., H. Soltanloo, S.S. Ramazanpour and V. Shariati. 2020. Evaluation of Biochemical Response and Defense Mechanism of Wheat Antioxidant Enzymes to Salinity Stress. Journal of Crop Breeding, 12(36): 90-100 (In Persian).
38. Lata, R., S. Chowdhury, S.K. Gond and Jr, J.F. White. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Journal Letters in applied microbiology, 66: 268-276. [DOI:10.1111/lam.12855]
39. Lee, M.H., E.J. Cho, S.G. Wi, H. Bae, J.E. Kim, J.Y. Cho, S. Lee, J.H. Kim and B.Y. Chung. 2013. Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Journal Plant Physiology and Biochemistry, 70: 325-335. [DOI:10.1016/j.plaphy.2013.05.047]
40. Lehner, A., N. Mamadou, P. Poels, D. Come, C. Bailly and F. Corbineau. 2008. Changes in soluble carbohydrates, lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains. Journal of Cereal Science, 47: 555-565. [DOI:10.1016/j.jcs.2007.06.017]
41. Liang, W., X. Ma, P. Wan and L. Liu. 2018. Plant salt-tolerance mechanism: A review. Journal Biochemical and biophysical research communications, 495: 286-291. [DOI:10.1016/j.bbrc.2017.11.043]
42. Lichtenthaler, H.K. and C. Buschmann. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Journal Current protocols in food analytical chemistry, 1: 3-4. [DOI:10.1002/0471142913.faf0403s01]
43. Liu, T., M. Sheng, C.Y. Wang, H. Chen, Z. Li and M. Tang. 2015. Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Journal Photosynthetica, 53: 250-258. [DOI:10.1007/s11099-015-0100-y]
44. Lugtenberg, B.J., J.R. Caradus and L.J. Johnson. 2016. Fungal endophytes for sustainable crop production. Journal FEMS Microbiology Ecology, 92(12). [DOI:10.1093/femsec/fiw194]
45. Molina-Montenegro, M.A., I.S. Acuña-Rodríguez, C. Torres-Díaz and P.E. Gundel. 2018. Root endophytes improve physiological performance and yield in crops under salt stress by up-regulating the foliar sodium concentration. bioRxiv, 435032. [DOI:10.1101/435032]
46. Morsy, M., B. Cleckler and H. Armuelles-Millican. 2020. Fungal Endophytes Promote Tomato Growth and Enhance Drought and Salt Tolerance. Plants, 9(7): 877. [DOI:10.3390/plants9070877]
47. Mucciarelli, M., S. Scannerini, C. Bertea and M. Maffei. 2003. In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. Journal New Phytologist, 158: 579-591. [DOI:10.1046/j.1469-8137.2003.00762.x]
48. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Journal Plant Biology, 59: 651-681. [DOI:10.1146/annurev.arplant.59.032607.092911]
49. Naveed, M., B. Mitter, T.G. Reichenauer, K. Wieczorek and A. Sessitsch. 2014. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Journal Environmental and Experimental Botany, 97: 30-39. [DOI:10.1016/j.envexpbot.2013.09.014]
50. Rawat, L., Y. Singh, N. Shukla and J. Kumar. 2011. Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Journal Plant and Soil, 347: 387. [DOI:10.1007/s11104-011-0858-z]
51. Rho, H., M. Hsieh, S.L. Kandel, J. Cantillo, S.L. Doty and S.H. Kim. 2018. Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Journal Microbial ecology, 75: 407-418. [DOI:10.1007/s00248-017-1054-3]
52. Rho, H., V. Van Epps, S.H. Kim and S.L. Doty. 2020. Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (Malus pumila). Journal Microorganisms, 8: 699 PP. [DOI:10.3390/microorganisms8050699]
53. Sheng, X.F., J.J. Xia, C.Y. Jiang, L.Y. He and M. Qian. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Journal Environmental pollution, 156: 1164-1170. [DOI:10.1016/j.envpol.2008.04.007]
54. Siddiqui, M.H., S. Alamri, Q.D. Alsubaie, H.M. Ali, M.N. Khan, A. Al-Ghamdi, A.A. Ibrahim and A. Alsadon. 2020. Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Journal Nitric Oxide, 94: 95-107. [DOI:10.1016/j.niox.2019.11.002]
55. Soad, A., X. Algam, X. Guan-lin and J. Coosemans. 2005. Delivery Methods for Introducing Endophytic Bacillus into Tomato and Their Effect on Growth Promotion and Suppression of Tomato Wilt. Plant Pathology Journal, 4: 69-74. [DOI:10.3923/ppj.2005.69.74]
56. Tátrai, Z.A., R. Sanoubar, Z. Pluhár, S. Mancarella, F. Orsini and G. Gianquinto. 2016. Morphological and physiological plant responses to drought stress in Thymus citriodorus. International Journal of Agronomy. [DOI:10.1155/2016/4165750]
57. Tefera, T. and Vidal S. 2009. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. Journal of BioControl, 54(5): 663-669. [DOI:10.1007/s10526-009-9216-y]
58. Vahabi, K., S.K. Dorcheh, S. Monajembashi, M. Westermann, M. Reichelt, D. Falkenberg, P. Hemmerich, I. Sherameti and R.Oelmüller. 2016. Stress promotes Arabidopsis-Piriformospora indica interaction. Journal Plant signaling an behavior, 11:e1136763. [DOI:10.1080/15592324.2015.1136763]
59. Yang, B., X. Wang, H. Ma, T. Yang, Y. Jia, J. Zhou and C. Dai. 2015. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere. Journal Frontiers in microbiology, 6: 982. [DOI:10.3389/fmicb.2015.00982]
60. Yang, S.H., L.J. Wang and S.H. Li. 2007. Ultraviolet-B irradiation-induced freezing tolerance in relation to antioxidant system in winter wheat (Triticum aestivum L.) leaves. Journal Environmental and experimental botany, 60: 300-307. [DOI:10.1016/j.envexpbot.2006.12.003]
61. Yemm, E.W. and A. Willis. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical journal, 57: 508-514. [DOI:10.1042/bj0570508]
62. Yun, P., L. Xu, S.S. Wang, L. Shabala, S. Shabala and W.Y. Zhang. 2018. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Journal Plant Growth Regulation, 86: 323-331. [DOI:10.1007/s10725-018-0431-3]
63. Zhang, F., Y. Wang, C. Liu, F. Chen, H. Ge, F. Tian, T. Yang, K. Ma and Y. Zhang. 2019. Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Journal Ecotoxicology and Environmental Safety, 170: 436-445. [DOI:10.1016/j.ecoenv.2018.11.084]
64. Zhang, S., Y. Gan and B. Xu. 2016. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Journal Frontiers in Plant Science, 7: 1405. [DOI:10.3389/fpls.2016.01405]
65. Zhang, X., C. Li and Z. Nan. 2010. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. Journal of Hazardous Materials, 175: 703-709. [DOI:10.1016/j.jhazmat.2009.10.066]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb