دوره 13، شماره 37 - ( بهار 1400 )                   جلد 13 شماره 37 صفحات 62-51 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fahmideh L, Mazarie A, Madadi S, Paris Pahlevan P P. (2021). Comparison between of Photosynthetic Pigments, Osmotic Regulators and Antioxidant Enzymes of Nimroz and Nomar Barley Cultivars of Sistan Region under Drought Stress. jcb. 13(37), 51-62. doi:10.52547/jcb.13.37.51
URL: http://jcb.sanru.ac.ir/article-1-1162-fa.html
فهمیده لیلا، مزارعی ایوب، مددی شهین، پهلوان پریسا. مقایسه بین رنگیزه‌های فتوسنتزی، تنظیم کننده‌های اسمزی و آنزیم‌های آنتی‌اکسیدانی ارقام نیمروز و نومار جو بومی منطقه سیستان تحت تنش خشکی پژوهشنامه اصلاح گیاهان زراعی 1400; 13 (37) :62-51 10.52547/jcb.13.37.51

URL: http://jcb.sanru.ac.ir/article-1-1162-fa.html


گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران ایران
چکیده:   (3433 مشاهده)
     خشکی یکی از مهمترین تنش­ هایی است که از رشد گیاهان ممانعت نموده و با ایجاد اختلال در تعادل بین تولید گونه­ های فعال اکسیژن و فعالیت­ های دفاعی آنتی­ اکسیدان گیاه، سب ایجاد تنش اکسیداتیو و واکنش ­های بیوشیمیایی و فیزیولوژیک متفاوتی در گیاهان می­ گردد. بنابراین، ارزیابی تحمل به خشکی گیاهان به ­منظور کشت در مناطق خشک از اهمیت ویژه­ای برخوردار است. در این راستا پژوهش حاضر با هدف بررسی و مقایسه دو رقم جو بومی منطقه سیستان براساس اندازه­ گیری برخی خصوصیات فیزیولوژیکی، میزان فعالیت برخی آنزیم­های آنتی ­اکسیدانی، رنگیزه ­های فتوسنتزی، میزان پروتئین، محتوی نسبی آب برگ (RWC) و همچنین برخی تنظیم ­کننده ­های اسمزی تحت تنش خشکی بود. این آزمایش به­ صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در آزمایشگاه تحقیقاتی مرکز زیست ­فناوری کشاورزی دانشگاه زابل و به صورت گلدانی انجام شد. تیمارهای آزمایشی شامل تنش خشکی (50، 75 و 100 درصد ظرفیت زراعی) و دو رقم جو بومی منطقه سیستان (نیمروز و نومار) بود. نتایج تجزیه واریانس نشان داد اثر رقم، تنش خشکی و برهم‌کنش رقم و تنش خشکی در سطح احتمال یک درصد برصفات مورد بررسی معنی­دار شد. همچنین نتایج مقایسه میانگین نشان داد با افزایش سطوح تنش خشکی نسبت به سطح نرمال، میزان رنگیزه­های فتوسنتزی، محتوی نسبی آب برگ و پروتئین کاهش یافت ولی غلظت پرولین و کربوهیدرات، میزان کاروتنوئید و فعالیت آنزیم ­های آنتی‌اکسیدانی آسکوربات ‌پراکسیداز، پلی­فنول اکسیداز و کاتالاز افـزایش یافت. بر اساس نتایج برهم‌کنش رقم و تنش خشکی، مشخص شد که رقم نیمروز عکس­العمل بهتری از نظر میزان پروتئین، محتوی نسبی آب برگ، کاروتنوئید، تنظیم­ کننده‌های اسمزی و آنزیم­ های آنتی ­اکسیدانی کاتالاز و آسکوربات پراکسیداز نسبت به رقم نومار در طول تنش خشکی نشان داد. در حالی­که رقم نومار دارای بالاترین میانگین از نظر میزان کلروفیل a، کلروفیل b، کلروفیل کل، پروتئین و آنزیم پلی­فنل اکسیداز نسبت به رقم نیمروز در طول تنش خشکی بود.
متن کامل [PDF 834 kb]   (578 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1399/6/1 | ویرایش نهایی: 1400/3/17 | پذیرش: 1399/9/18 | انتشار: 1400/3/11

فهرست منابع
1. Ajithkumarand, P. and R. Panneerselvam. 2013. Osmolyte accumulation, photosynthetic pigment and growth ofvsetaria italica under droght stress. Asian Pacific Journal, 2: 220-224. [DOI:10.1016/S2305-0500(13)60151-7]
2. Akbari, V. and R. Jalili Marandi. 2014. Effect of Cycocel on Growth and Photosynthetic Pigments of Tow Olive Cultivars under Different Irrigation Intervals. Journal of Horticultural Science, 27(4): 460-469 (In Persian).
3. Amini, Z. and R. Haddad. 2013. Role of photosynthetic Pigments and antioxidant enzymes against oxidative stress. Journal of Molecular and Cellular Research (Iranian Journal of Biology), 26(3): 251-265 (In Persian).
4. Amudha, J. and G. Balasubramani. 2010. Recent molecular advances to combat abiotic stress tolerance in cropplants. Biotechnology and Molecular Biology Review, 6(2): 31-58.
5. Anderson, C.M. and B.D. Kohorn. 2001. Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars and drought tolerance. Plant Physiology, 158: 1215-1219. [DOI:10.1078/S0176-1617(04)70149-2]
6. Arvin, P., J. Vafa bakhsh and D. Mazaheri. 2018. Study of Plant Growth Promoting Rhizobacteria (PGPR) and Drought on Physiological Traits and Ultimate Yield of Cultivars of Oilseed Rape (Brassica spp. L.) Journal of Agroecology, 9(4): 1208-1226 (In Persian).
7. Arzani, A. and A.Gh. Akbarian. 2015. Effects of Drought Stress on Antioxidant Enzymes Activity in Triticale Lines. Journal of Crop Breeding, 16(7): 158-167 (In Persian).
8. Asada, K. 2000. The water-water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society B: Biological Sciences, 355:1419-1431. [DOI:10.1098/rstb.2000.0703]
9. Bajji, M., S. Lutts and J.M. Kinet. 2001. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticumdurum Desf) cultivars performing differently in arid conditions. Plant Science, 160: 669-681. [DOI:10.1016/S0168-9452(00)00443-X]
10. Bates, L.S., R.P. Waldern and I.D. Teave. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-107. [DOI:10.1007/BF00018060]
11. Beers, G.R. and I.V. Sizer. 1952. A spectrophotometric method for measuring the break down of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195: 133-140. [DOI:10.1016/S0021-9258(19)50881-X]
12. Bian, S. and Y. Jiang. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentuckybluegrass in response to drought stress and recovery. Scientia Horticulturae, 120(2): 264-270. [DOI:10.1016/j.scienta.2008.10.014]
13. Blum, A., G. Gozlan and J. Mayer. 1981. The Manifestation of Dehydration Avoidance in Wheat Breeding Germplasm 1. Crop Science, 21(4): 495-499. [DOI:10.2135/cropsci1981.0011183X002100040004x]
14. Bohenert, H.J. and B. Shen. 1999. Transformation and compatible solutes. Scientia Horticulturae, 78: 237-260. [DOI:10.1016/S0304-4238(98)00195-2]
15. Bradford, M.M. 1976. Analytical Biochemistry, 72: 248-254. [DOI:10.1016/0003-2697(76)90527-3]
16. Chaves, M.M., O. Zarrouk, R. Francisco, J.M. Costa and C.M. Lopes. 2010. Grapevine under deficitirrigation: hints from physiological and molecular data. Annals of Botany, 105(5): 661-676. [DOI:10.1093/aob/mcq030]
17. Crowe, J.H., F.A. Hoekstra and L.M. Crowe. 1992. Anhydrobiosis. Annual Review of Physiology, 54: 579-599. [DOI:10.1146/annurev.ph.54.030192.003051]
18. Delarampoor, M.A., L. Fahmideh and Z. Fooladvand. 2019. Effect of drought stress on NAC gene expression in some bread wheat cultivars of Sistan region. Environmental Stresses in Crop Sciences, 12(3): 649-662 (In Persian).
19. Dshtaki, M., M.R. Bihamta, E. Majidi and R. Azizinezhad. 2020. Study of seed germination indices in bread wheat genotypes (Tritiumaestivum L.) under drought stress simulated with polyethylene glycol. Environmental Stresses in Crop Sciences, 13(1): 197-210 (In Persian).
20. De Lacerda, C.F., J. Cambraia, M.A. Oliva and H.A. Ruiz. 2005. Changes in growth and in solute concentrations in Sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 54: 69-76. [DOI:10.1016/j.envexpbot.2004.06.004]
21. Emam, Y., H.A. Karimzadeh, S. Mori and K. Maghsudi. 2013. Biochemical responses of two wheat cultivars to late season drought stress and auxin and cytokinin application. Journal of Plant Process and Function, 2(3): 65-74 (In Persian).
22. Esfandiari, E.A., M.R. Shakiba, S.A. Mahboob, H. Alyari and S. Shahabivand. 2009. The effect of water stress on the antioxidant content, protective enzyme activities, proline content and lipid peroxidation in wheat seedling. Pakistan Journal of Biological Sciences, 11: 1916-1922 [DOI:10.3923/pjbs.2008.1916.1922]
23. FAO. 2010. Land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush.
24. Fazeli, F., M. Ghorbanli andV. Niknam. 2007. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum, 51(1): 98-103. [DOI:10.1007/s10535-007-0020-1]
25. Filella, I., J. Llusia, J.O. Pin and J.U. Pen. 1998. Leaf gas exchange and fluorescence of Phillyrea latifolia, Pistacia lentiscus and Quercusilex saplings in severe drought and high temperature conditions. Environmental and Experimental Botany, 39: 213-220. [DOI:10.1016/S0098-8472(97)00045-2]
26. Fujita, T., A. Maggio, M.G. Rios, C. Stauffacher, R.A. Bressan and L.N. Csonka. 2003. Identification of regions of the tomato - glutamyl kinase that are involved in allosteric regulation by proline. Journal of Biological Chemistry, 278: 14203-14210. [DOI:10.1074/jbc.M212177200]
27. Ganji, M., E. Farahmandfar, M. Shahbazi and M. Zahravi. 2016. Biochemical characterization and grain yield of selected genotypes of wild barley(Hordeumvulgare ssp. spontaneum) Different levels of drought stress. Journal of Plant Process and Function, 5(15):75-90.
28. Ghaderi, A.A., B. Fakheri and N. Mahdi Nezhad. 2017. Evaluation of the morphological and physiological traits of thyme (Thymus vulgaris L.) under water deficit stress and foliar application of ascorbic acid. Journal of Agricultural Crops Production, 19(4): 817-835.
29. Gholipour, S. and A. Ebadie. 2017-2018. Study change compatibility metabolites and antioxidant enzyme activities of wheat cultivars under water stress. Journal of Plant Process and Function, 6(19): 219-232 (In Persian).
30. Ghorbanli, M., M. Gafarabad,T. Amirkian and M.B. Allahverdi. 2013. Investigation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Physiology, 3(2): 651-658 (In Persian).
31. Ghosh, P.K., K.K. Ajay, M.C. Bandyopadhyay, K.G. Manna, A.K. Mandal and K.M. Hati. 2004. Comparative affective of cattle manure, pultry manure, phospocompost and fertilizer- NPK on three cropping system in vertisols of semi- arid tropics. Dry matter yield, nodulation, chlorophyll. Content and Enzyme Activity. Bioresours Technology, 95: 85-93. [DOI:10.1016/j.biortech.2004.02.012]
32. Girija, C., B.N. Smith and P.M. Swamy. 2002. Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in peanut (Arachishypogaea L.). Environmental and Experimental Botany, 43: 1-10 [DOI:10.1016/S0098-8472(01)00096-X]
33. Golabadi, M., Z. Abbasi and A.R. Golparvar. 2014. Variations in physiological indices of bread wheat flag leaf in response to drought stress. Environmental Stresses in Crop Sciences, 7(1): 1-11 (In Persian).
34. Gomes, F.P., M.A. Oliva, M.S. Mielke, A.A.F. Almeida and L.A. Aquino. 2010. Osmotic adjustment, proline accumulation and membrane stability in leaves of Cocosnuciera submitted to drought stress. Scientia Horticulturae, 126: 379-384. [DOI:10.1016/j.scienta.2010.07.036]
35. Guha, A., D. Sengupta, G.K. Rasineni and A.R. Reddy. 2012. Non-enzymatic antioxidant defence in drought-stressed mulberry (Morusindica L.) genotypes. Trees, 26: 903-918. [DOI:10.1007/s00468-011-0665-4]
36. Habibi, D., M. Mashdi Akbar Boojar, A. Mahmoudi, M.R. Ardakani and D. Taleghani. 2004. Antioxidative enzyme in sunflower subjected to drought stress. In: 4th International Crop Science Congress, Brisbane, Australia.
37. Hassanpour Lescokelaye, K., J. Ahmadi, J. Daneshyan and S. Hatami. 2015. Changes in Chlorophyll, Protein and Antioxidant Enzymes on Durum Wheat under Drought Stress. Journal of Crop Breeding, 7(15): 76-87 (In Persian).
38. Hashemi, S.E., Y. Emam and H. Pirasteh Anosheh. 2015. The Effect of Time and Type of Salicylic Acid Application on Growth Trend, Yield and Yield Components of Barley (hordeum Vulgare L.) Under Salinity Tension Conditions. Crop Physiology Journal, 6(24): 5-18 (In Persian).
39. Heidari Sharifabadi, H. 2001. Methods to deal with dryness and drought drought. Volume1, Publishing Research Institute of Forests and Rangelands, Tehran, 171 pp (In Persian).
40. Hoseini, S.S., M. Cheniany, M. Lahouti and A. Ganjeali. 2016. Evaluation of resistance to drought stress in seedlings of two lines of Triticale (Triticosecale × Wittmack) with emphasis on some enzymatic and non-enzymatic antioxidants. Iranian Journal of Plant Biology, 8(30): 27-42 (In Persian).
41. Ilektra, S. and M. Michael. 2012. Interaction of proline, sugars and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Plant Physiology, 169: 577-585. [DOI:10.1016/j.jplph.2011.12.015]
42. Irigoyen, J.J., D.W. Emerrich and M. Sanchez-Diaz. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa plant. Physiol Plant, 84: 55-60. [DOI:10.1034/j.1399-3054.1992.840109.x]
43. Jiang, Y. and B. Huang. 2000. Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Science, 40: 1358-1362. [DOI:10.2135/cropsci2000.4051358x]
44. Jiang, Y. and B. Huang. 2001. Drought and heat sressinjury to two cool-season turfgrasses in relation toantiaxdant metabolism and lipid peroxidation. CropScience, 41: 436-442. [DOI:10.2135/cropsci2001.412436x]
45. Jiang, Y. and B. Huang. 2002. Protein alterations in tall fescue in response to water stress and abscisic acid. Crop Science, 42: 202-208. [DOI:10.2135/cropsci2002.0202]
46. Kaphi, M. and A. Mahdavi damghani. 2000. Mechanisms of plant resistance to drought stress. University of Ferdosi Mashhad Publications, 472 pp (In Persian).
47. Kar, M. and D. Mishra 1976. Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant physiology, 57(2): 315-319. [DOI:10.1104/pp.57.2.315]
48. Karimi Afshar, A., A. Baghizadeh and Gh. Mohammadi-Nejad. 2015. Physiological assessment of drought tolerance of two ecotypes of cumin (Cuminumcyminum L.) under greenhouse conditions. Journal of Science and Technology of Greenhouse Culture, 6(3): 175-185(In Persian). [DOI:10.18869/acadpub.ejgcst.6.3.175]
49. Karimi, N. and Z. Souri. 2015. Investigating the interaction between arsenic and phosphorus on chlorophyll content and accumulation of malondialdehyde in Isatis cappadocica. Journal of Plant Process and Function, 4(11): 1-12 (In Persian).
50. Kariola, T., G. Brader, J. Li and E.T. Palva. 2005. A damage control enzyme, affects the balance between defense pathways in plant. The Plant Cell, 282-294. [DOI:10.1105/tpc.104.025817]
51. Khan, H.U., W. Link, T. Hocking and F. Stoddard. 2007. Evaluation of physiological biomembranes. Methods in Enzymology, 148: 350-382.
52. Kruk, J., H.H. Czytko, W. Oettmeier and A. Trebest. 2005. Tocopherol as singlet oxygen scavenger in photosystem II. Journal Plant Physiology, 162: 749-757. [DOI:10.1016/j.jplph.2005.04.020]
53. Lang-Mladek, C., O. Popova, K. Kiok, M. Berlinger, B. Rakic and W. Aufastez. 2010. Transgenerational inheritance and resetting of stress-induced loss of epigenetic inArabidopsis. Molecular Plant, 3: 594-602. [DOI:10.1093/mp/ssq014]
54. Ma, Q.SH., R. Niknam and D.W. Turner. 2006. Response of osmotic adjustment and seed yieldof Brassicanapus and Brassicajounce to soilwater deficit at different growth stages.Australian Journal of Agricultural Research, 57: 221-226. [DOI:10.1071/AR04283]
55. Mandhanis, S., S. Madan and V. Whney. 2006. Antioxidant defence mechanism under salt stress in wheat seedling. Biologia Plantarum, 52(6): 22-27.
56. Mardeh, A.S.S., A. Ahmadi, K. Poustini and V. Mohammadi. 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98(2): 222-229. [DOI:10.1016/j.fcr.2006.02.001]
57. Martin, M., F. Micell, J.A. Morgan, M. Scalet and G. Zerbi. 1993. Synthesis of osmotically active substances in winter wheat leaves as related to drought resistance of different genotypes. Journal of Agronomy and Crop Science, 171: 176-184. [DOI:10.1111/j.1439-037X.1993.tb00129.x]
58. Masinde, P.W., H. Stützel, S.G. Agong and A. Frickle. 2005. Plant growth, water relations and transpiration of spider plant (Gynandropsisgynandra) under water limited conditions. Journal of the American Society for for Horticultural Science, 130: 469-477. [DOI:10.21273/JASHS.130.3.469]
59. Mazarie, A., A.R. Sirousmehr and Z. Babaei. 2017. Effect of mycorrhizal fungi on some morphological & physiological charactristics of Milk thistle (Silybummarianum (L.) Gaertn.) under drought stress. Iranian Journal of Medicinal and Aromatic Plants, 33(4): 620-635 (In Persian).
60. Mazarie, A., A.R. Sirousmehr, M. Broshaki, Z. Babaei and A.A. Mahmmody. 2019. Effect of irrigation interval and chitosan spraying on some physiological characteristics and Antioxidant enzymes activity of common Mallow (Malvasylvestris). Iranian Journal of Plant Biology, 11(2): 77-102 (In Persian).
61. Mishra, S. and R.S. Dubey. 2006. Heavy metal uptakeand detoxification mechanisms in plants. InternationalJournal of Agricultural Research, 1(2): 122-141. [DOI:10.3923/ijar.2006.122.141]
62. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Tren Plant Science, 7: 405-410. [DOI:10.1016/S1360-1385(02)02312-9]
63. Mittler, R., S. Vanderauwera, M. Gollery and F. Vanbreusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Science, 9: 490-498. [DOI:10.1016/j.tplants.2004.08.009]
64. Molodi, A., A. Ebadi and S. Gahanbakhsh. 2015. Effect of nitrogen application on some characteristics of drought tolerance in spring barley. Journal of Corp Production, 8(3): 95-114 (In Persian).
65. Naeemi, T., F. Fahmideh and B.A. Fakheri. 2018. The impact of drought stress on antioxidant enzymes activities, containing of proline and carbohydrate in some genotypes of durum wheat (TriticumturgiduL.) at seedling stage. Journal of Crop Breeding, 10(26): 22-31 (In Persian). [DOI:10.29252/jcb.10.26.22]
66. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascarbate specific peroxidases in spinach Chloroplasts. Plant cell physiology, 22: 867-880
67. Nautical, P.C., N.R. Rachaputi and Y.C. Joshi. 2002. Moisture-deficit-induced changes in leafwater content, leaf carbon exchange rate andbiomass production in groundnut cultivarsdiffering in specific leaf area. Field CropResearch, 74: 67-79. [DOI:10.1016/S0378-4290(01)00199-X]
68. Oliviera-Neto, C.F., A.K. Silva-Lobato, M.C. Goncalves-Vidigal, R.C.L. Costa, B.G. Santosfilho, G. A.R. Alves, W.J.M. Silva-Maia, F.J.R. Cruz, H.K.B. Neres and M.J. Santos Lopes. 2009. Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Science and Technology, 7: 588-593.
69. Pessarkli, M. 1999. Hand book of Plant and Crop Stress. Marcel Dekker Inc.697 PagesAjithkumarand, P., and Panneerselvam, R. 2013. Osmolyte accumulation, photosynthetic pigment and growth of setariaitalica under droght stress. Asian Pacific Journal, 2: 220-224. [DOI:10.1016/S2305-0500(13)60151-7]
70. Prochazka, S., I. Machaackova, J. Kreekule and J. Sebanek. 1998. Plant physiology Academia Praha, 484 pp.
71. Rajinder, S.D. 1987. Glutathione status and protein synthesis during drought and subsequent dehydration in Torula rulis. Plant Physiology, 83: 816-819. [DOI:10.1104/pp.83.4.816]
72. Ranjan, R., S.P. Bohra and A.M. Jeet. 2001. Book of plant senescence. Jodhpur, Agrobios New York, 18-42.
73. Reddy, A.R., K.V. Chaitanya and M. Vivekanandan. 2004. Drought-inducedresponses of photosynthesis and antioxidantmetabolism in higher plants. Journal of PlantPhysiology, 161(11): 1189-1202. [DOI:10.1016/j.jplph.2004.01.013]
74. Sairam, R.K., K.V. Rao and G.C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163: 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
75. Sanchez-Blanco, J., T. Fernandez, A. Morales, A. Morte and J. Alarcon. 2006. Variation in water stress, gas exchange, and growth in Rosmarinusofficinalis plants infected with Glamusdeserticola under drought conditions. Journal of Plant Physiology, 161: 675-682. [DOI:10.1078/0176-1617-01191]
76. Schutz, H. and E. Fangmier. 2001. Growth and yield responses of spring wheat (Triticumaestivum L.) to elevated CO2 and water limitation. Environmental Pollution, 114: 187-194. [DOI:10.1016/S0269-7491(00)00215-3]
77. Shao, H.B., L.Y. Chu, C.A. Jaleel, P. Manivannan, R. Panneerselvam and M.A. Shao. 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the Eco environment in arid regions of the globe, Crit. Biotechnol, 29: 131-151. [DOI:10.1080/07388550902869792]
78. Shao, H.B., Z.S. Liang, M.A. Shao and Q. Sun. 2005. Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits. Colloids and Surfaces Biointerfaces, 42: 187-195. [DOI:10.1016/j.colsurfb.2005.02.007]
79. Sharifi, P. and N. Mohammadkhani. 2018. Effects of Drought Stress on Enzymatic and Non- Enzymatic Antioxidants in Flag Leaf and Spikes of Tolerant and Sensitive Wheat Genotypes. Journal of Plant Productions (Scientific Journal of Agriculture), 41(3): 37-51 (In Persian).
80. Sofo, A., B. Dichio, C. Xiloyannis and A. Masia. 2004. Lipoxygenase activity and praline accumulation in leaves and roots of olive tree in response to drought stress. Plant Physiology, 121: 56-58. [DOI:10.1111/j.0031-9317.2004.00294.x]
81. Soleimani, Z., H. Ramshini, S.M.M. Mortazaviyan and B. Foghi.2015. Screening of Bread Wheat Genotypes for Stem ReservesRemobilization, Relative Water Content and Osmotic Adjustmentunder Drought Stress. Journal of Crop Ecophysiology, 9(1): 79-92(In Persian).
82. Sunkar, R. 2010. Plant stress tolerancemethods and protocols, Humana Press. [DOI:10.1007/978-1-60761-702-0]
83. Taheri, Gh. 2015. The effect of chitosan foliar application on physiological characteristics of Binaloud under drought stress. Iranian Journal of Agricultural Research1, 3(4): 728-737 (In Persian).
84. Tahkokorpi, M. 2010. Anthocyanins under drought and drought-related stresses in blueberry (Vacciniummyrtillus L.). Faculty of Science, Department of Biology, University of Oulu, Finland, 46 pp.
85. Thipyapong, P., J. Melkonian, D.W. Wolfe and J.C. Steffens. 2004. Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Science, 167(4): 693-703. [DOI:10.1016/j.plantsci.2004.04.008]
86. Venkateswarlu, B. and K. Ramesh. 1993. Cell membrane stability and biochemical response of cultured cells of groundnut under polyethylene glycol-induced water stress. Plant Science, 90: 179-185. [DOI:10.1016/0168-9452(93)90238-U]
87. Wise, R.R. and W. Naylor. 1998. Chillingenhanced photo-oxidation, the peoxidativedestruction of lipids during chilling injury tophotosynthesis and ultrasracture. Plant physiology, 83: 278-282.
88. Yong, T., L. Zongsuo, S. Hongbo and D. Feng. 2006. Effect of water deficits on the activity ofanti-oxidative enzymes and osmoregulationamong three different genotypes of Radixastragali at seeding stage. Colloids and Surfaces Biointerfaces, 49: 60-65. [DOI:10.1016/j.colsurfb.2006.02.014]
89. Yousefi Rad, M., M. Asghari, M. Mohammadi and A. Masoumi Zavarian. 2016. Effect of drought stress on yield, yield components and some physiological characteristics of seven barley varieties. Journal of Crop Production Breeding, 7(4): 297-309 (In Persian).
90. Zhang, J., Y. Yao, G.S. John and C.F. David. 2010. Influence of soil drought stress on photosynthesis, carbohydrates and the nitrogen and phosphorus absorb in different section of leaves and stem of Fuji/M.9 EML, a young apple seedling. African Journal of Biotechnology, 9: 5320-532.
91. Zhang, Z., X. Pang, X. Duan, Z.L. Ji and Y. Jiang. 2005. Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chemistry, 90: 47-52. [DOI:10.1016/j.foodchem.2004.03.023]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb