دوره 12، شماره 36 - ( زمستان 1399 1399 )                   جلد 12 شماره 36 صفحات 234-216 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

beyzavi F, Baghizadeh A, Mirzaei S, Maleki M, Mazafari H. (2020). Investigation of some Biochemical Traits of Tolerant and Sensitive Wheat Cultivars (Triticum Bioticum) under Salinity Stress. jcb. 12(36), 216-234. doi:10.52547/jcb.12.36.216
URL: http://jcb.sanru.ac.ir/article-1-1158-fa.html
بیضاوی فاطمه، باقی زاده امین، میرزایی سعید، ملکی محمود، مظفری حسین. بررسی برخی صفات بیوشیمایی ارقام متحمل و حساس گندم تریتیکوم بیوتیکوم تحت تنش شوری پژوهشنامه اصلاح گیاهان زراعی 1399; 12 (36) :234-216 10.52547/jcb.12.36.216

URL: http://jcb.sanru.ac.ir/article-1-1158-fa.html


دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان
چکیده:   (2095 مشاهده)
شوری، یکی از مهم‌ترین تنش ­های غیر زنده محیطی است و یکی از مهم‌ترین عوامل کاهش رشد و عملکرد گیاهان زراعی  از جمله گندم می­ باشد. گندم یکی از پر اهمیت‌ترین محصولات زراعی در ایران می­ باشد و سطوح پلوئیدی گندم به­ عنوان یک منبع مهم از ژن‌‌های ممتاز بوده و مطالعه روی این گونه ها به ­منظور استفاده در فعالیت‌‌های اصلاحی بسیار مطلوب است. گندم دیپلویید دارای ۲۷ گونه‌ی متفاوت است. در این میان T.boeticum گسترده‌ترین نوع گندم وحشی که در مناطق سرد نیمه غربی کشور انتشار دارد. این پژوهش در سال ۱۳۹۸ در دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان بر روی دو ژنوتیپ مختلف از گندم T.boeticum که متعلق به کردستان و لرستان ایران است مورد بررسی و اجرا قرار گرفت. بذور این گندم ­ها در زمستان سال ۹۸ به­صورت آزمایش فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار کشت شدند و در دو سطح تنش شوری صفر و ۱۲۵ میلی­ مولار مورد تجزیه آماری قرار گرفتند. نتایج حاصل از تجزیه واریانس صفات شامل رنگیزه‌‌های فتوسنتزی، قندهای محلول، پروتیین ­ها، فنل­ها، پرولین، نشت یونی، رطوبت نسبی، پراکسیدهیدروژن، طول ریشه، برخی آنزیم آنتی ­اکسیدانی و سنجش سدیم و پتاسیم نشان داد، بین سطوح ژنوتیپ و سطوح تنش شوری و همچنین اثرات متقابل این دو تیمار از نظر صفات مورد بررسی اختلاف معنی­ داری وجود دارد.
متن کامل [PDF 1067 kb]   (1033 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1399/5/22 | ویرایش نهایی: 1399/11/17 | پذیرش: 1399/10/16 | انتشار: 1399/11/17

فهرست منابع
1. Alfonso-Prieto, M., X. Biarnes, P. Vidossich and C. Rovira. 2009. The molecular mechanism of the catalase reaction. Journal of the American Chemical Society, 131: 11751-11761. [DOI:10.1021/ja9018572]
2. Alvarez, I., M. Tomaro and M. Benavides. 2003. Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell, Tissue and Organ Culture, 74, 51-59. [DOI:10.1023/A:1023302012208]
3. Angelov, G.B. 2003. Isoenzyme variation of esterase and acid phosphatase and genetic affinities among Dasypyrum villosum (l.) p. candargy, Elytrigia repens (l.) nevski and Elymus caninus (l.) l. Turkish Journal of Botany, 27(4): 249-254.
4. Arzani, A. and M. Salehi. 2013. Antioxidant activity and oxidative stress due to salinity in triticale and wheat lines in field condition. Journal of Plant Process and Function, 1(2): 38-49 (In Persian).
5. Asekun, O.T., D.S. Grieron and A.S. Afolayan. 2006. Influence of drying methods on the chemical composition and yield of the essential oil of leonotis leonurus. Journal of Science Research, 10, 61-64.
6. Atlassi Pak, V. 2018. Evaluation of sodium accumulation in leaves of wheat (Triticum aestivum l.) cultivars differing in salt tolerance. Journal of Plant Productions (Agronomy, Breeding and Horticulture), 41(1): 43-56.
7. Azadi, A., A. Pazoki, H. Hosseini Siyanaki, M. Zandipour, N. Mirzaabdollah and E. Abbaszade. 2013. Screening the salinity tolerance of the wheat cultivars at germination and seedling stages. Plant and Ecosystem, 9(34-1 (supplement)).
8. Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39(1): 205-207. [DOI:10.1007/BF00018060]
9. Bektas, H., C.E. Hohn and J.G. Waines. 2016. Root and shoot traits of bread wheat (Triticum aestivum l.) landraces and cultivars. Euphytica, 212(2): 297-311. [DOI:10.1007/s10681-016-1770-7]
10. Borzouei, A., S.S. Jamali and F. Paknejad. 2015. Root characteristics, Na+/K+ ratio and grain yield of seven wheat genotypes under salinity stress Print. Journal of Greenhouse Culture Science and Technology, 5(20): 165-175.
11. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. [DOI:10.1016/0003-2697(76)90527-3]
12. Chaparzadeh, N. and L. Zarandi Miandoab. 2011. The effects of salinity on pigments content and growth of two canola (Brassica napus L.) cultivars. Plant Biology, 9: 13-26.
13. Chen, Y., J. Palta, P.V. Prasad and K.H. Siddique. 2020. Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biology, 20(1): 1-16 [DOI:10.1186/s12870-020-02390-8]
14. Chinnusamy, V., A. Jagendorf and J.K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Science, 45: 437-448. [DOI:10.2135/cropsci2005.0437]
15. Cicek, N. and H. Cakirlar. 2002. The effect of salinity on some physiological parameters in two maize cultivars. bulgarian. Journal Plant Physiology, 28(1-2): 66-74
16. Dashti, H., M.R. Naghavi and A. Tajabadipour. 2010. Genetic analysis of salinity tolerance in a bread wheat cross. Journal of Agricultural and Science Technology, 12: 347-356 (In Persian).
17. Dashti, H., A.T.A. Pour, H. Shirani and M. Naghavi. 2011. Evaluation of wheat germplasm in response to salinity stress. Iranian Journal of Field Crop Science, 41(4): 655-664 (In Persian).
18. Demiral, T. and L. Turkan. 2005. Comparative lipid per oxidation antioxidant defense system and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53: 247-257. [DOI:10.1016/j.envexpbot.2004.03.017]
19. Dhindsa, R.S., P. Plumb-Dhindsa and T.A. Thorpe. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1): 93-101. [DOI:10.1093/jxb/32.1.93]
20. Dierig, D.A., C.M. Grieve and M.C. Shannon, 2003. Selection for salt tolerance in lesquerella fendleri (gray) s. wats. Industrial Crops and Products, 17(1): 15-22. [DOI:10.1016/S0926-6690(02)00054-7]
21. Doganlar, Z.B., K. Demir, H. Basak and I. Gul. 2010. Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. African Journal of Agricultural Research, 5(15): 2056-2065.
22. Fales, F.W. 1951. The assimilation and degradation of carbohydrates by yeast cells. Journal Biological Chemistry, 193: 113-124. [DOI:10.1016/S0021-9258(19)52433-4]
23. FAO, A. 2000. Extent and causes of salt affected soils in participating countries. Global Network on integrated soil management for sustainable use of saltaffected soils Available at http://www.fao.org/ag/agl/agll/spush/intro.htm.
24. Farhoudi, R. 2014. Investigation the salinity tension effect on growth and physiological characteristics of nine wheat cultivars at vegetative growth stage. Crop Physiology Journal, 5(20): 71-86 (In Persian).
25. Flurkey, W.H. and J.K. Inlow. 2008. Proteolytic processing of polyphenol oxidase from plants and fungi. Journal of Inorganic Biochemistry, 102(12): 2160-2170. [DOI:10.1016/j.jinorgbio.2008.08.007]
26. Gao, X., M. Ohlander, N. Jeppsson, L. Bjork and V. Trajkovski. 2000. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides l.) during maturation. Journal of Agricultural and Food Chemistry, 48(5): 1485-1490. [DOI:10.1021/jf991072g]
27. Gewin, V. 2010. An underground revolution: plant breeders are turning their attention to roots to increase yields without causing environmental damage. Virginia gewin unearths some promising subterranean strategies. Nature, 466(7306): 552-554. [DOI:10.1038/466552a]
28. Ghasemi, A., S. Navabpour, A. Yamchi and S. Hoshmand. 2016. Effect of salinity stress on some morphological and biochemical characteristics of three bread wheat (Trticum aestivum L.) genotypes. Journal of Environmental Stresses in Crop Sciences, 8(2): 273-283.
29. Gholami, A.A. 2018. Manipulating the pathway for the synthesis of carotenoids to improve the quality of food products through biotechnology. Journal of Biosafety, 10(4): 1-15 (In Persian).
30. Gholizadeh, A., H. Dehghani, A. Amini and O. Akbarpour. 2018. Investigation of the genetic diversity of Iranian bread wheat germplasm for tolerance to saline stress. Journal of Crop Breeding, 10(26): 173-184 (In Persian). [DOI:10.29252/jcb.10.26.173]
31. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909-930. [DOI:10.1016/j.plaphy.2010.08.016]
32. Golkar, P., L. Keshavarz and M. Saffari. 2016. Evaluation of salt stress effect on the agro-physiological traits of bread wheat (triticum aestivum l.) and durum wheat (Triticum turgidum L.) at the seedling stage. Journal of Crop Production and Processing, 6(20): 41-53 (In Persian). [DOI:10.18869/acadpub.jcpp.6.20.41]
33. Hamed, K.B., A. Castagna, E. Salem, A. Ranieri and C. Abdelly. 2007. Sea fennel (Crithmum maritimum l.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 53(3): 185-194. [DOI:10.1007/s10725-007-9217-8]
34. Hassibi, P., L. Zandieh, N. ghaemmaghami, N. rashidi rezvan, H. najafi and F. ghaemmaghami. 2010. Study of some physiological characteristics of two wheat (Triticum aestivum L.) cultivars under NaCl and CaCl2 salinity stress. Crop Physiology, 2(2): 3-24.
35. Hazegh Jafari, P., S. Aharizad, S.A. Mohammadi, F. Noormand Moayyed and P. Behrooz. 2014. Grouping of alfalfa genotypes based on different characteristics using multivariate statistical analysis. Journal of Crop Breeding, 6(14): 107-121 (In Persian).
36. William, H.R, E.S. Raymond and W.H. Colin. 1988. The structure of metals and alloys. The Institute of Metals, 1 Carlton House Terrace, London SW 1 Y 5 DB, UK.
37. Jaleel, C.A., B. Sankar, R. Sridharan and R. Panneerselvam. 2013. Soil salinity alters growth, chlorophyll content and secondary metabolite accumulation in catharanthus roseus. Turkish Journal of Biology, 32: 79-83.
38. Jones, R.A. and C.O. Qualset. 1984. Breeding crops for environmental stress tolerance. In G. B. Collins and J.G. Petolino (Eds.), Applications of Genetic Engineering to Crop Improvement (pp: 305-340). Dordrecht: Springer Netherlands. [DOI:10.1007/978-94-009-6207-1_10]
39. Kar, M. and D. Mishra. 1976. Catalase, peroxidase, polyphenol oxidase activities during rice senescence. Plant Physiology, 57: 315-319. [DOI:10.1104/pp.57.2.315]
40. Kucuk, M., S. Kolaylı, S. Karaoglu, E. Ulusoy, C. Baltacı and F Candan, 2007. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100(2): 526-534. [DOI:10.1016/j.foodchem.2005.10.010]
41. Kuk, Y.I., J.S. Shin, N.R. Burgos, T.E. Hwang, O. Han, B.H. Cho and J.O. Guh. 2003. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Science, 43(6): 2109-2117. [DOI:10.2135/cropsci2003.2109]
42. Lichtenthaler, H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 148: 350-382. [DOI:10.1016/0076-6879(87)48036-1]
43. Long, N.V., O. Dolstra, M. Malosetti, B. Kilian, A. Graner, R.G. Visser and C.G. Van der Linden. 2013. Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 126(9): 2335-2351. [DOI:10.1007/s00122-013-2139-0]
44. Loss, SP. and K. Siddique. 1994. Morphological and physiological traits associated with wheat yield increases in mediterranean environments.in: Advances in Agronomy, vol 52. Elsevier, pp: 229-276. [DOI:10.1016/S0065-2113(08)60625-2]
45. Lynch, J.P. 2019. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytologist, 223(2): 548-564. [DOI:10.1111/nph.15738]
46. Maosong, L., W. Chunyan and S. Jiqing. 2008. Evolutional trends of leaf stomatal and photosynthetic characteristics in wheat evolutions. Acta Ecologica Sinica, 28: 5385-5391. [DOI:10.1016/S1872-2032(09)60010-X]
47. Mazinani, M.A., M. Moghaddam, S.S. Alavikia, M.R. Shakiba, A.A. Mehrabi and A.R. Pour Aboughadareh. 2012. Study of genetic diversity in t. boeoticum populations under normal and water deficit stress conditions. Cereal Research, 2-1, 17-30 (In Persian).
48. Munns, R. and M. Gilliham. 2015. Salinity tolerance of crops. What Is The Cost? New Phytologist, 208(3): 668-673. [DOI:10.1111/nph.13519]
49. Munns, R., R.A. James, 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253(1): 201-218. [DOI:10.1023/A:1024553303144]
50. Nakano, Y. and A. Kozi. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22-5, 867-880.
51. Nasibi, F., K. Manochehri, G. Mohamadinejad and R. Zangane. 2016. Effects of amino acid arginine on some oxidative parameters and increase of salinity tolerance in wheat plant. Journal of Plant Research, 28(5): 11-19.
52. Naz, A.A., M. Arifuzzaman, S. Muzammil, K. Pillen and J. Leon. 2014. Wild barley introgression lines revealed novel qtl alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genetics, 15(1): 107. [DOI:10.1186/s12863-014-0107-6]
53. Nezhad Alimoradi, H., K. Manouchehr Kalantari and S.M.J. Arvin. 2009. Study of effect of ultraviolet radiation on some biochemical parameters in two varieties of wheat (Triticum aestivum l.) under salinity stress. Iranian Journal of Biology, 21(5): 796-805 (In Persian).
54. Niazkhani, S.M., B. Abdollahi Mandoulakani, M. Jafari and M. Rasouli-Sadaghiani. 2019. Effect of soil zn deficiency on antioxidant enzymes activity and biochemical parameters in bread wheat. Crop Physiology Journal, 11(41): 5-27 (In Persian).
55. Nikitaki, Z., C.E. Hellweg, A.G. Georgakilas, and J.L. Ravanat, 2015. Stress induced DNA damage biomarkers: applications and limitations. Frontiers in Chemistry, 3: 1-15. [DOI:10.3389/fchem.2015.00035]
56. Niu, X, M.L. Narasimhan, R.A. Salzman, R.A. Bressan and P.M. Hasegawa. 1993. NaCl regulation of plasma membrane H+-Atpase gene expression in a glycophyte and a halophyte. Plant Physiology, 103 (3): 713-718. [DOI:10.1104/pp.103.3.713]
57. Pandey, N., B. Gupta and G.C. Pathak. 2012. Antioxidant responses of pea genotypes to zinc deficiency. Russian Journal of Plant Physiology, 59(2): 198-205. [DOI:10.1134/S1021443712010141]
58. Plewa, M.J. and D.W. Elizabeth. 1993. Activation of promutagens by green plants. Annual Review of Genetics, 27(1): 93-113. [DOI:10.1146/annurev.ge.27.120193.000521]
59. Qasim, M., M. Ashraf, M.Y. Ashraf, S.U. Rehman and E.S. Rha. 2003. Salt induced changes in two canola cultivars differing in salt tolerance. Biologia Plantarum, 46(4): 629-632. [DOI:10.1023/A:1024844402000]
60. Rahimi Tashi, T. and V. Niknam. 2015. Evaluation of salicylic acid pretreatment and salinity effect on some physiological and biochemical parameters in (Triticum aestivum L.) Journal of Plant Research. Iranian Journal of Biology, 28(2): 297-306 (In Persian).
61. Shiferaw, B., M. Smale, H.J. Braun, E. Duveiller, M. Reynolds and G. Muricho. 2013. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5(3): 291-317. [DOI:10.1007/s12571-013-0263-y]
62. Rezvani Moghaddam, P. and A. Koocheki. 2001. Research history on salt affected lands of Iran: present and future prospects Halophytic ecosystem International symposium on prospects of saline agriculture in the GCC Countries. Paper Presented at the Dubai, UAE.
63. Rosello, M., C. Royo, M. Sanchez-Garcia and J.M. Soriano. 2019. Genetic dissection of the seminal root system architecture in mediterranean durum wheat landraces by genome wide association study. Agronomy, 9(7): 364. [DOI:10.3390/agronomy9070364]
64. Sahi, C., A. Singh, E. Blumwald and A. Grover. 2006. Beyond osmolytes and transporters: novel plant salt‐stress tolerance‐related genes from transcriptional profiling data. Physiologia Plantarum, 127(1): 1-9. [DOI:10.1111/j.1399-3054.2005.00610.x]
65. Shabani Nezhad, S., Z. Khodarahmpour and M. Soltani Howyzeh. 2018. Grouping of wheat (Triticum aestivum L.) varieties on the morpho-physiologic characteristics under salinity stress condition. Iranian Journal of Seed Sciences and Research, 4(4): 59-71.
66. Shirazi, M.U., M.Y. Ashraf, M.A. Khan and M.H. Nagvi. 2005. Potassium induced salinity tolerance in wheat. International Journal of Environment Science Technology, 2(3): 233-236. [DOI:10.1007/BF03325881]
67. Sinhaa, P.G., R. Kapoora, D.C. Upretyb and A.K. Bhatnagara. 2009. Impact of elevated co2 concentration on ultrastructure of pericarp and composition of grain in three triticum species of different ploidy levels. Environmental and Experimental Botany, 66(3): 451-456. [DOI:10.1016/j.envexpbot.2009.04.006]
68. Tester, M. and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5): 503-527. [DOI:10.1093/aob/mcg058]
69. Thipyapong, P., M.J. Stout and J. Attajarusit. 2007. Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules, 12(8): 1569-1595. [DOI:10.3390/12081569]
70. Trull, M, M. Guiltinan, J. Lynch and J. Deikman. 1997. The responses of wild‐type and ABA mutant arabidopsis thaliana plants to phosphorus starvation. Plant, Cell and Environment, 20(1): 85-92. [DOI:10.1046/j.1365-3040.1997.d01-4.x]
71. Tuberosa, R. 2011. Phenotyping for drought tolerance of cropin the genomics era: key concepts, issues and approaches. University of bolongna, Italy. Frontiers in Physiology Journal, 3: 1-26. [DOI:10.3389/fphys.2012.00347]
72. Turkan, I., M. Bor, F. Ozdemir and H. Koca, 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant p. acutifolia gray and drought-sensitive p. vulgaris l. subjected to polyethylene glycol mediated water stress. Plant Science, 168: 223-231. [DOI:10.1016/j.plantsci.2004.07.032]
73. Velikova, V., I. Yordanov and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1): 59-66. [DOI:10.1016/S0168-9452(99)00197-1]
74. Wang, W., B. Vinocur and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1): 1-14. [DOI:10.1007/s00425-003-1105-5]
75. Wasaya, A., X. Zhang, Q. Fang and Z. Yan. 2018. Root phenotyping for drought tolerance: a review. Agronomy, 8(11): 241. [DOI:10.3390/agronomy8110241]
76. Zamocky, M., P.G. Furtmuller and C. Obinger. 2008. Evolution of catalases from bacteria to humans. Antioxidants and Redox Signaling, 10: 1527-1547. [DOI:10.1089/ars.2008.2046]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb