Volume 9, Issue 24 (3-2018)                   jcb 2018, 9(24): 166-178 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asghari A, mohammadniya S, Fallahi H. Assesment of Salinity Tolerance in Some Canola Cultivars using Morphophysiologic Traites and ISSR Markers. jcb. 2018; 9 (24) :166-178
URL: http://jcb.sanru.ac.ir/article-1-931-en.html
Faculty of Agricultural Sciences, University of Mohaghegh Ardabil
Abstract:   (984 Views)
Canola (Brassica napus L.) is one of the most important world's oilseed crops. The salin soils and salinity is the most important environmental stress factor that affects production of rapeseed. In order to study salinity resistance in canola cultivars at seedling stage based on morphophisiyological traits and assessing relation of these traits with ISSR markers, 15 canola cultivars in two salinity stress levels (150 mM and 250 mM) and non stress condition (control) were studied at greenhouse condition as hydroponic culture method. In this study, salinity stress caused decreasing of all evaluated morphophisiyological traits, except Na to K ratio and Na content. Results of mean comparisons and classification by cluster analysis of cultivars in different conditions showed that the SLMO46 and PF were better than other cultivars in all traits,was superior for average of most traits. So, the Hyolla60 and Licord cultivars in all traits had lower amounts. In Molecular analysis using 11 ISSR primers, 45 polymorphic bands produced in studied canola cultivars. Means of Polymorphic Information Content and Marker Index for all primers were obtained 0.282 and 1.108, respectively. In cluster analysis using ISSR data and Nei`s genetic distanceand UPGMA method, the canola cuhtivars classified in three clusters. The minimum genetics distance obtained between Zarfam and Jevel cultivars (0.079) and the maximum distance observed between Quantum and Hyola60 whit SLMO46 cultivars (0.32).
 
Full-Text [PDF 723 kb]   (740 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2018/03/10 | Revised: 2019/04/14 | Accepted: 2018/03/10 | Published: 2018/03/10

References
1. Abdolzadeh, A. and N. Safari. 2002. Comparison of salt tolerance in eleven varieties of wheat with emphasize on ions accumulation. Agricltural Sciences Natural Resources, 9(2): 95-103 (In Persian).
2. Ahmadi, S.H. and J. Niazi Ardekani. 2006. The effect of water salinity on growth and physiological stages of eight Canola (Brassica napus) cultivars. Irrigation Sciences, 25(1): 11-20. [DOI:10.1007/s00271-006-0030-3]
3. Akbari Ghogdi, E., A. Izadi darbandi, A. Borzooei and A. Majdabadi. 2011. Study of morphological changes in wheat genotypes under salt stress. Science and Technology of Greenhouse Culture, 4(1): 71-82 (In Persian).
4. Alizadeh, A. 2010. Soil water plant relationship. 3th edn. Imamreza University, Mashad, Iran, 484 pp.
5. Archangi, A., M. Khodambashi and A. Mohamadkhani. 2012. The effect of salt stress on morphological characteristics and Na+, K+ and Ca+ ion contents in medicinal plant fenugreek (Trigonella foenum graecum L.) under hydroponic culture. Science and Technology of Greenhouse Culture, 3(10): 33-41.
6. Ashraf, M., T. Mcneilly and A.D. Bradshaw. 1985. The Potential for evolution of salt (NaCl) tolerance in seven grass species. New Phytologist, 103(2): 299-309. [DOI:10.1111/j.1469-8137.1986.tb00617.x]
7. Ashraf, M. 2001. Relationships between growth and gas exchange characteristics in some [DOI:10.1016/S0098-8472(00)00090-3]
8. salt-tolerant amphidiploids Brassica species in relation to their diploid parents. Environmental and Experimmental Botany, 45(2): 155-163.
9. Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. ScienceDirect, 199(5): 361-376. [DOI:10.1078/0367-2530-00165]
10. Ashraf, M. and M.R. Foolad. 2005. Pre-sowing seed treatment-a shotgun approach to improve germination growth and crop yield under saline and none-saline conditions. Advan. Agron, 88: 223-271. [DOI:10.1016/S0065-2113(05)88006-X]
11. Ashraf, M. and Q. Ali. 2008. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63(3): 266-273. [DOI:10.1016/j.envexpbot.2007.11.008]
12. Ashraf Mehrabi, A., M. Omidi and B. Fazeli Nasab, B. 2011. Effects of salinity on seed germination, seedling growth and callus culture of canola genotypes. Journal of Field Crop Science, 42(1): 81-90.
13. Azimi, M., M. Khodarahmi and M.R. Jalalkamali. 2012. Evaluation of some important agronomic characteristics in spring bread wheat genotypes under terminal drought stress and non-stress conditions. Iranian Journal of Agronomy and Plant Breeding, 8(1): 175-193 (In Persian).
14. Benlloch, M., M.A. Ojeda, J. Ramos and A. Rodriguesnavarro. 1994. Salt sensitivity and low discrimination between potassium and sodium in plants. Plant and Soil, 166(1): 117-123. [DOI:10.1007/BF02185488]
15. Blumwald, E., S.G. Aharon and M.P. Apse. 2000. Sodium Transport in Plant Cells. Biochimica et Biophysica Acta. 1465(1-2): 140-151. [DOI:10.1016/S0005-2736(00)00135-8]
16. Bybordi, A and S.J. Tabatabaei. 2009. Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(1): 71-76.
17. Bybordi, A. 2010. Effects of Salinity on Yield and Component Characters in Canola (Brassica napus L.) Cultivars. Noulaet Scientia Biologicae, 2(1): 81-83. [DOI:10.15835/nsb213560]
18. Chaves, M.M., J. Flexas and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4): 551-560. [DOI:10.1093/aob/mcn125]
19. Davenport, R., R. James, A. Zakrisson, M. Tester and R. Munns. 2005. Control of sodium transport in durum wheat. Plant Physiology, 137(3): 807-818. [DOI:10.1104/pp.104.057307]
20. Dingkuhn, M., S.K. De Datta, R. Pamplona, C. Javellana and H.F. Schnier. 1992. Effect of late- season N fertilization on photosynthesis and yield of transplanted and direct- seeded tropical flooded rice. II. A canopy stratification study. Field Crop Research, 28(3): 235- 249. [DOI:10.1016/0378-4290(92)90043-9]
21. Esfandiari, E., F. Shekari, F. Shekari and M. Esfandiari. 2007. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedling. Notulae Botanicae Horti Agrobotanici Cluj, 35(1): 48-56.
22. Francois, L.E. 1994. Growth, seed yield and oil content of canola grown under saline conditions. Agronomy Journal, 86(2): 233-237. [DOI:10.2134/agronj1994.00021962008600020004x]
23. Francis, D and D Piekielek. 2000. Assessing crop nitrogen needs with chlorophyllmeters. The site specific management guidelines series is published by the potash and phosphate institute (PPI). Coordinated by South Dakota State University (SDSU).
24. Jones, J.B. 2001. Laboratory guide for conduction soil tests and plant analysis. CRC press, LLC, U.S. [DOI:10.1201/9781420025293]
25. Kerepesi, H and G. Galiba. 2000. Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedling. Crop Science, 40(2): 482-487. [DOI:10.2135/cropsci2000.402482x]
26. Mahjoob, B., H. Najafi-Zarini and H.R. Hashemi. 2014. Assessment of genetic relationships among 36 Brassica genotypes using ISSR molecular markers. Journal of Crop Breeding, 6(14): 96-106 (In Persian).
27. Marschner, H. 1995. Mineral nutrition of higher plants. Academics Press. London.
28. Mohammad, M., H. Malkawi and R. Shibili. 2003. Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. Journal of plant Nutrition, 26(1): 125-137. [DOI:10.1081/PLN-120016500]
29. Monirifar, H. 2016. Development and Evaluation of a Synthetic Alfalfa Variety for Tolerance to Salinity. Journal of Crop Breeding, 18(8):176-182 (In Persian). [DOI:10.29252/jcb.8.18.176]
30. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environment, 25(2): 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
31. Nagaoka, T. and Y. Ogihara. 1997. Applicability of inter-simple sequence repeats polymorphism in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics, 94(5): 597-602. [DOI:10.1007/s001220050456]
32. Nei, M. 1973. Analysis of gene diversity in subdivided populations. PNAS, 70(12): 3321-3323. [DOI:10.1073/pnas.70.12.3321]
33. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3): 583-590.
34. Nemati, M and A. Asghari.2012. Evaluation of osmotic stress tolerance in hydroponics.Journal of science and Technology of Greenmhomuse Culture, 3(11): 19-30 (In Persian).
35. Nemati, M., A. Asghari, O. Sofalian, A. Rasoulzadeh and H.R. Mohamaddoust Chamanabad. Effect of Water Stress on Rapeseed Cultivars Using Morpho-Physiological Traits and Their Relations with ISSR Markers. 2012. Journal of Plant Physiology and Breeding, 2(1):55-66.
36. Penuelas, J., R. Isla, I. Filella and J.L. Araus. 1997. Visible and near- infrared reflectance assessment of salinity effects on barley. Crop Science, 37(1): 198-202. [DOI:10.2135/cropsci1997.0011183X003700010033x]
37. Powell, W., M. Morgante and C. Andr. 1996. The comparision of RFLP, RAPD, AFLP and SSR (microsatellite) marker for germplasm analysis. Molecular Breeding, 2(3): 225-238. [DOI:10.1007/BF00564200]
38. Prevost, A. and M.J. Wikinson. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98(1):107-112. [DOI:10.1007/s001220051046]
39. Rashid, A., R.H. Qureshi, P.A. Holington and R.G.W. Jones. 1999. Comparative responses of wheat cultivars to salinity at the seedling stage. Crop Science, 182(3): 199-207. [DOI:10.1046/j.1439-037x.1999.00295.x]
40. Reddy, M.P and A.B. Vora. 1986. Changes in pigments composition, hill reaction activity and saccharine metabolism in Bajra (Pennisetum typhoides S&H) leaves under NaCl salinity. Photosynthetica, 20: 50-55.
41. Roldan-Ruiz, F.A., T.J. Gilliland, P. Dubreuil, C. Dillmann and J. Lallemand. 2001. A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theoretical and Applied Genetics, 103(8): 1138-1150. [DOI:10.1007/s001220100571]
42. Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen and R.W. Allard. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance chromosomal location, population dynamics. Proceeding of the National Acadev of Sciences, 81(24): 8014-8018. [DOI:10.1073/pnas.81.24.8014]
43. Shiran, B., N. Amirbakhtiar, S. Kiani, sh. Mohammadi, E. Sayed Tabatabei and T. Moradi .2007. Molecular charactrization and genetic relationship among almond cultivars assessed by RAPD and SSR markers. Scientia Horticulturae, 111(5): 280-292. [DOI:10.1016/j.scienta.2006.10.024]
44. Tarinejad, A., H. Gayomi, V. Rashidi, F. Farahvash and B. Alizade. 2012. Evaluation of Tolerance Rate of Canola Cultivar to Salinity Stress. Sustainable Agriculture and Production Science, 22(4.1): 29-43 (In Persian).
45. Tester, M. and R. Dovenport. 2003. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5): 503-527. [DOI:10.1093/aob/mcg058]
46. Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson and G.J. Bryan. 1998. AFLP markers for the study of rice biodiversity. Theoretical and Applied Genetics, 96(5): 602-611. [DOI:10.1007/s001220050778]
47. Zhu, J. 2003. Regulation of ion homeostasis under salt stress. Current Opinion Plant Biology, 6(5): 441-445. [DOI:10.1016/S1369-5266(03)00085-2]
48. Monirifar, H. 2016. Development and Evaluation of a Synthetic Alfalfa Variety for Tolerance to Salinity. Journal of Crop Breeding, 18(8):176-182 (In Persian). [DOI:10.29252/jcb.8.18.176]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2020 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb