دوره 10، شماره 25 - ( بهار 1397 1397 )                   جلد 10 شماره 25 صفحات 63-72 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramzi E, Asghari A, Khomari S, Mohammaddoust e Chamanabad H. Investigation of Durum wheat (Triticum turgidum L. subsp. durum Desf) Lines for Tolerance to Aluminum Stress Condition. jcb. 2018; 10 (25) :63-72
URL: http://jcb.sanru.ac.ir/article-1-551-fa.html
الناز رمزی، اصغری علی، خماری سعید، محمددوست چمن‌آباد حمیدرضا. بررسی تحمل لاین‌های پیشرفته گندم دوروم (Triticum turgidum L. Subsp. durumDesf) تحت شرایط تنش آلومینیوم. پژوهشنامه اصلاح گیاهان زراعی. 1397; 10 (25) :63-72

URL: http://jcb.sanru.ac.ir/article-1-551-fa.html


دانشگاه محقق اردبیلی
چکیده:   (974 مشاهده)

آلومینیوم یکی از فراوان­ترین عناصر موجود در خاک است که در خاک­هایی با اسیدیته بالا به شکل انحلال­ پذیر Al+3 در آمده، از طریق ریشه جذب شده و به ­این ترتیب بر رشد گیاهان اثر می­گذارد. ارزیابی تحمل گیاهان به تنش­های زیست محیطی به­ویژه در خلال مرحله جوانه­زنی و رشد گیاهچه عامل مهمی در انتخاب آن­ها برای کشت در شرایط مختلف می­باشد. به­منظور بررسی تنوع ژنتیکی 83 لاین پیشرفته گندم دوروم تحت سمیت آلومینیوم در مرحله گیاهچه در شرایط آزمایشگاهی، آزمایشی به­صورت فاکتوریل در قالب طرح پایه کاملا تصادفی با دو تکرار انجام شد. سطوح تنش شامل شاهد و غلظت 5/2 میلی­ مولار آلومینیوم و صفات اندازه­گیری شده شامل تعداد ریشه­چه، وزن تر ریشه ­چه و ساقه­ چه، طول ریشه­ چه و ساقه ­چه، وزن خشک ریشه­ چه و ساقه­ چه و نسبت طول ریشه­ چه به ساقه ­چه بودند. نتایج حاصل نشان داد که تنش بر تمامی صفات تاثیر معنی ­دار داشت.
هم­چنین، بین لاین­ های گندم دوروم از لحاظ تمامی صفات اختلاف معنی­ دار مشاهده شد. برهم­کنش رقم در تنش در همه صفات معنی­ دار بود. ارزیابی لاین­های برتر بر اساس شاخص انتخاب ژنوتیپ ایده­آل (
SIIG) انجام شد. لاین­های 35، 58، 72، 75، 76، 77، 82 و 83 با داشتن بالاترین شاخص SIIG متحمل به تنش آلومینیوم و لاین­ های 11، 16، 21، 25، 26، 65، 66، 68 و 73 با داشتن پایین­ترین مقدار این شاخص حساس به تنش آلومینیوم بودند. نتایج حاصل از رتبه­ بندی بر مبنای شاخص فوق با نتایج حاصل از تجزیه خوشه­ ای بر مبنای شاخص Ti انطباق زیادیی داشت.
 

واژه‌های کلیدی: گندم، آلومینیوم، گیاهچه، تنش، SIIG
متن کامل [PDF 1927 kb]   (290 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: ۱۳۹۵/۲/۱۱ | ویرایش نهایی: ۱۳۹۷/۴/۱۶ | پذیرش: ۱۳۹۵/۱۱/۱۹ | انتشار: ۱۳۹۷/۴/۱۷

فهرست منابع
1. Abdalla, M.M. 2008. Physiological aspects of Aluminum toxicity on some metabolic and hormonal contents of Hordeum vulgare seedlings. Australian Journal of Basic and Applied Sciences, 2: 549-560.
2. Ahn, S.J., M. Sivaguru, G.C. Chung, Z. Rengel and H. Matsumoto. 2002. Aluminum- induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). Journal of Experimental Botany, 53: 1959-1966. [DOI:10.1093/jxb/erf049]
3. Anonymous. 2005. The State of the World,s Plant Genetic Resources for Food and Agricultur. F.A.O., Rome, Italy,
4. Arzani, A. 2004. Breeding Field Crops (Translated). Isfahan University of Technology Publication. 606 pp.
5. Azevedo, A.A. and M.A. Oliva. 1989. Effect of aluminum on productivity and mineral elements in soybean. Pesquisa Agropecuaria Brasileira, 24: 1537-1546.
6. Barcelo, J. and C. Poshenrieder. 2002. Fast root growth responses, root exudates and internal detoxification as clues to the mechanism of aluminum toxicity and resistance: a review. Environmental and Experimental Botany, 48: 75-92. [DOI:10.1016/S0098-8472(02)00013-8]
7. Batista, M.A., J.C. Pintro, ACSD. Costa, C.A. Tormena, C.M. Bonato and M.F. Batista. 2009. Mineral composition and dry mass production of the corn plants in response tophosphorus sources and aluminum concentration. Brazilian Archives of Biology and Technology, 52: 541-548.‌ [DOI:10.1590/S1516-89132009000300004]
8. Batista, M.F., I.S. Moscheta, C.M. Bonato, M.A. Batista, O.J.G.D. Almeida and T.T. Inoue. 2013.Aluminum in corn plants: influence on growth and morpho-anatomy of root andleaf. Revista Brasileira de Ciência do Solo, 37: 177-187.‌ [DOI:10.1590/S0100-06832013000100018]
9. Bhuja, P., K. Mclachlan, J. Stephens and G. Taylor. 2004. Accumulation of 1,3-β-D-glucans,in response to aluminum and cytosolic calcium in Triticum aestivum. Plant and Cell Physiology, 45: 543-549. [DOI:10.1093/pcp/pch068]
10. Carver, B.F. and J.D. Ownby. 1995. Acid soil tolerance in wheat. Academic Press, SanDiego,U.S.A, 350 pp. [DOI:10.1016/S0065-2113(08)60899-8]
11. Chen, L.S. 2006. Physiologicalresponses and tolerance of plant shoot to aluminum toxicity. Journal of Plant Physiology Molecular Biology, 32: 143-155.
12. FAO. 2013. FAOSTAT, http://faostat.fao.org/site/
13. Fargione, J., J. Hill, D. Tilman, S. Polasky, P. Hawthorne and X. Ianyong. 2010. Aluminum- induced changes in reactive oxygen species accumulation, lipid peroxidation and antioxidative capacity in root tips of two wheat genotypes differing in aluminum tolerance. National Natural Science Foundation of China, 4: 1-14.
14. Haluskova, L., K. Valentovicova, J. Huttova, I. Mistrik and L. Tamas. 2010. Effect of heavy metals on root growth and peroxidase activity in barley root tip. Acta Physiologiae Plantarum, 32: 59-65. [DOI:10.1007/s11738-009-0377-1]
15. Harvey, P.J., B.F. Campanella and P.M.L. Castro. 2002. Phytoremediation:PAHs,Anilines, Phenols; Environmental Scienceand Pollution Reseach, 9: 29-47. [DOI:10.1007/BF02987315]
16. Horst, W.J., Y. Wang and D. Eticha. 2010. The role of the root apoplast in aluminum-induced inhibition ofroot elongation and in aluminum of plant: a review. Annlas of Botany, 106: 185-197. [DOI:10.1093/aob/mcq053]
17. Kollmeier, M. and W.J. Horst. 2000. Genotypical difference in aluminum resistance of maize are expressed in the distal parts of transition zone.Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiology, 122: 945-956. [DOI:10.1104/pp.122.3.945]
18. Matsumoto, H. 2000. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology, 200: 1-46. [DOI:10.1016/S0074-7696(00)00001-2]
19. Meriga, B., I.H. Attitalla, M. Ramgopal, A. Ediga and PB. Kavikishor. 2010. Differential tolerance to Aluminum toxicity in rice cultivars:Involvement of antioxidative enzymes and possible role of Aluminum resistant locus. Academic Journal of Plant Science, 3: 53-63.
20. Okcu, G., M.D. Kaya and M. Atak. 2005. Effect of salt and drought stress on germination andseedling growth of pea (Pisum sativum). Turkish Journal of Agriculture, 29: 137-243.
21. Ouyang, C., S. Gao, LJ. Mei, TW. Chung, L. Tang, SH. Wang and F. Chen. 2014. Effectsof aluminum toxicity on the growth and antioxidant status in Jatropha curcas seedlings. Medicinal Plants Research, 8: 178-185. [DOI:10.5897/JMPR11.1589]
22. Palma, J.M., L.M. SandalioJavier, F. Corpas, M.C. Romero- Puertas, I. McCarthy and L.A. DelRio. 2002. Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40: 521-530. [DOI:10.1016/S0981-9428(02)01404-3]
23. Panda, S.K., L.B. Singha and M.H. Khan. 2003. Does of aluminium phytotoxicity induceoxidative stress in greengram (Vigna radiata). Bulgarian Journal of Plant Physiology, 29: 77-84.
24. Poot‐Poot, W., T. Hernandez‐Sotomayor and M. Soledad. 2011. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications. IUBMB life, 63: 864-872. [DOI:10.1002/iub.550]
25. Rheinheimer, DS., C. Petry, J. Kaminski and HR. Bartz. 1994. Aluminum stress in tobacco plants: I. Effects on phosphorus and calcium uptake, root system and dry matterproduction. Revista Brasoleria de Ciência do solo, 18: 63-68.
26. Romero-Puertas, M.C., M. Rodriguez-Serrano, F.J. Corpas, M. Gomez, L.A. Delrio and L.M. Sandalio. 2004. Cadmium induced subcellular Accumulation of O2- and H2O2 in pea leaves. Plant Cell Environmental, 27: 1122-1134. [DOI:10.1111/j.1365-3040.2004.01217.x]
27. Rout, G., S. Samantaray and P. Das. 2001. Enlarge-Alimunium toxicity in plants: A review. Agronomie, 21: 3-21. [DOI:10.1051/agro:2001105]
28. Sun, P., Q.Y. Tian, J. Chen and W.H. zhang. 2010. Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. Journal of Experimental Botany, 61: 347-357. [DOI:10.1093/jxb/erp306]
29. Swarup, R., P. Perry, D. Hagenbeek, D.V.D. Straeten, S.T. Beemster, G. Sandberg, R. Bhalerao, K. Ljung and M.J. Bennett. 2007. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. The Plant Cell, 19: 2186-2196. [DOI:10.1105/tpc.107.052100]
30. Vitorello, V.A., F.R. Capaldi and V.A. Stefanuto. 2005. Recent advances in aluminum toxicity and resistance in higher plants. Brazilian Journal of Plant Physiology, 17: 129-143. [DOI:10.1590/S1677-04202005000100011]
31. Wang, J., H. Raman, G. Zhang, N. Mendham and M. Zhoum. 2006. Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. Journal of Zhejiang University Science, 7: 769-778. [DOI:10.1631/jzus.2006.B0769]
32. Weston, L.A. 1996. Utilization of allelopathy for weed management in agro-ecosystems. Agronomy Journal, 88: 860-866. [DOI:10.2134/agronj1996.00021962003600060004x]
33. Williams, L.E., J.K. Pittman and J.L. Hall. 2000. Emerging mechanisms for heavy metal transport in plants. Biochemica et Biophysica Acta, 1465: 104-126. [DOI:10.1016/S0005-2736(00)00133-4]
34. Wrigley, C. 2004. Encyclopedia Grain Science, ElsevierAcademic Press, Oxford, vol. 1 Cereals, 187-201. [DOI:10.1016/B0-12-765490-9/00031-8]
35. Yakimova, E.T., V.M.W. Kapchina-Toteva and E.J. Oltering. 2007. Signal transduction events in aluminum-induced cell deathin tomato suspension cells. Journal ofPlant Physiology, 164: 702-708. [DOI:10.1016/j.jplph.2006.03.018]
36. Yamamoto, Y., Y. Kobayashi, S.R. Devi, S. Rikiishi and H. Matsumoto. 2003. Oxidative stress triggered by aluminum in plant roots. In: Roots, The Dynamic Interface betweenPlants and the Earth Springer Netherlands, 239-243. [DOI:10.1007/978-94-017-2923-9_23]
37. Yin, L., J. Mano, S. Wang, W. Tsuji and K. Tanaka. 2010. The involvement of lipid peroxide-derivedaldehydes in aluminum toxicity of Tobacco roots. Plant Physiology, 152: 1406-1417. [DOI:10.1104/pp.109.151449]
38. Zali, H., O. Sofalian, T. Hasanloo, A. Asghari and S.M. Hoseini. 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum-An International Journal, 7: 703-711.
39. Zali, H., O. Sofalian, T. Hasanloo, A. Asghari and M. Zeinalabedini. 2016. Appropriate Strategies for Selection of Drought Tolerant Genotypes in Canola. Journal of Crop Breeding, 8(20): 77-90 (In Persian). [DOI:10.29252/jcb.8.18.191]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb