1. Adolf, V. I., Jacobsen, S. E., Shabala, S. J., & Botany, E. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.), 92, 43-54. [
DOI:10.1016/j.envexpbot.2012.07.004]
2. Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., ... & Cushman, J. C. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. Journal of Experimental Botany, 58(8), 1957-1967. [
DOI:10.1093/jxb/erm057]
3. Apse, M. P., & Blumwald, E. (2007). Na+ transport in plants. FEBS letters, 581(12), 2247-2254. [
DOI:10.1016/j.febslet.2007.04.014]
4. Archangi, A., Khodambashi, M., & Mohammadkhani, A. (2012). The effect of salt stress on morphological characteristics and Na+, K+ and Ca+ ion contents in medicinal plant fenugreek (Trigonella foenum graecum L.) under hydroponic culture. 20123294104
5. Ashraf, M., & McNeilly, T. (2004). Salinity tolerance in Brassica oilseeds. Critical reviews in plant Sciences, 23(2), 157-174. [
DOI:10.1080/07352680490433286]
6. Ashraf, M., Nazir, N., & McNeilly, T. (2001). Comparative salt tolerance of amphidiploid and diploid Brassica species. Plant Science, 160(4), 683-689. [
DOI:10.1016/S0168-9452(00)00449-0]
7. Berthomieu, P., Conéjéro, G., Nublat, A., Brackenbury, W. J., Lambert, C., Savio, C., ... & Casse, F. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO journal. [
DOI:10.1093/emboj/cdg207]
8. Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 71-76.
9. Dini, I., Tenore, G. C., Trimarco, E., & Dini, A. (2006). Two novel betaine derivatives from Kancolla seeds (Chenopodiaceae). Food chemistry, 98(2), 209-213. [
DOI:10.1016/j.foodchem.2005.05.014]
10. El‐Hendawy, S. E., Ruan, Y., Hu, Y., & Schmidhalter, U. (2009). A comparison of screening criteria for salt tolerance in wheat under field and controlled environmental conditions. Journal of Agronomy and Crop Science, 195(5), 356-367. [
DOI:10.1111/j.1439-037X.2009.00372.x]
11. Gaxiola, R. A., Yuan, D. S., Klausner, R. D., & Fink, G. R. (1998). The yeast CLC chloride channel functions in cation homeostasis. Proceedings of the National Academy of Sciences, 95(7), 4046-4050. [
DOI:10.1073/pnas.95.7.4046]
12. Hamada, A., Hibino, T., Nakamura, T., & Takabe, T. (2001). Na+/H+ antiporter from Synechocystis species PCC 6803, homologous to SOS1, contains an aspartic residue and long C-terminal tail important for the carrier activity. Plant physiology, 125(1), 437-446. [
DOI:10.1104/pp.125.1.437]
13. Han, H., Qu, Y., Wang, Y., Zhang, Z., Geng, Y., Li, Y., ... & Ma, C. (2023). Transcriptome and small rna sequencing reveals the basis of response to salinity, alkalinity and hypertonia in quinoa (Chenopodium quinoa Willd.). International Journal of Molecular Sciences, 24(14), 11789. [
DOI:10.3390/ijms241411789]
14. Hanson, A. D., May, A. M., Grumet, R., Bode, J., Jamieson, G. C., & Rhodes, D. (1985). Betaine synthesis in chenopods: localization in chloroplasts. Proceedings of the National Academy of Sciences, 82(11), 3678-3682. [
DOI:10.1073/pnas.82.11.3678]
15. Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., & Shabala, S. (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of experimental botany, 62(1), 185-193. [
DOI:10.1093/jxb/erq257]
16. Hayashi, H., Alia, Sakamoto, A., Nonaka, H., Chen, T. H., & Murata, N. (1998). Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. Journal of Plant Research, 111, 357-362. [
DOI:10.1007/BF02512197]
17. Hinojosa, L., González, J. A., Barrios-Masias, F. H., Fuentes, F., & Murphy, K. M. (2018). Quinoa abiotic stress responses: A review. Plants, 7(4), 106. [
DOI:10.3390/plants7040106]
18. Hosseini, S. S., Ramezanpour, S. S., Soltanloo, H., & Seifati, S. E. (2023). RNA-seq analysis and reconstruction of gene networks involved in response to salinity stress in quinoa (cv. Titicaca). Scientific Reports, 13(1), 7308. [
DOI:10.1038/s41598-023-34534-9]
19. Ishitani, M., Nakamura, T., Han, S. Y., & Takabe, T. (1995). Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant molecular biology, 27, 307-315. [
DOI:10.1007/BF00020185]
20. Jacobsen, S. E., Liu, F., & Jensen, C. R. (2009). Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 122(2), 281-287. [
DOI:10.1016/j.scienta.2009.05.019]
21. Jacobsen, S. E., Monteros, C., Corcuera, L. J., Bravo, L. A., Christiansen, J. L., & Mujica, A. (2007). Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, 26(4), 471-475. [
DOI:10.1016/j.eja.2007.01.006]
22. Jacobsen, S. E. (2003). The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food reviews international, 19(1-2), 167-177. [
DOI:10.1081/FRI-120018883]
23. J Jacobsen, S. E., Jensen, C. R., & Pedersen, H. (2005). Use of the relative vegetation index for growth estimation in quinoa (Chenopodium quinoa Willd.). J Food Agric Environ, 3, 169-175.
24. Jarvis, D. E., Ho, Y. S., Lightfoot, D. J., Schmöckel, S. M., Li, B., Borm, T. J., ... & Tester, M. (2017). The genome of Chenopodium quinoa. Nature, 542(7641), 307-312. [
DOI:10.1038/nature21370]
25. Jiang, W., Li, C., Li, L., Li, Y., Wang, Z., Yu, F., ... & Zhao, C. (2022). Genome-wide analysis of CqCrRLK1L and CqRALF gene families in chenopodium quinoa and their roles in salt stress response. Frontiers in Plant Science, 13, 918594. [
DOI:10.3389/fpls.2022.918594]
26. Jiang, Y., Zhu, S., Yuan, J., Chen, G., & Lu, G. (2016). A betaine aldehyde dehydrogenase gene in quinoa (Chenopodium quinoa): structure, phylogeny, and expression pattern. Genes & Genomics, 38, 1013-1020. [
DOI:10.1007/s13258-016-0445-z]
27. Khorshid, A., Asadi, A. A. & Rajabi, A. 2021. Determination of Genetic Parameters of Quantitative and Qualitative Traits of Sugar Beet in Drought and Normal Conditions. Journal of Crop Breedding, 13(40), 151-161 doi:10.52547/jcb.13.40.151. [In Persian] [
DOI:10.52547/jcb.13.40.151]
28. Leidi, E. O., Barragán, V., Rubio, L., El‐Hamdaoui, A., Ruiz, M. T., Cubero, B., ... & Pardo, J. M. (2010). The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. The Plant Journal, 61(3), 495-506. [
DOI:10.1111/j.1365-313X.2009.04073.x]
29. Li, Z., Hansen, J. L., Liu, Y., Zemetra, R. S., & Berger, P. H. (2004). Using real-time PCR to determine transgene copy number in wheat. Plant Molecular Biology Reporter, 22, 179-188. [
DOI:10.1007/BF02772725]
30. Liu, M., Pan, T., Allakhverdiev, S. I., Yu, M., & Shabala, S. (2020). Crop halophytism: an environmentally sustainable solution for global food security. Trends in Plant Science, 25(7), 630-634. [
DOI:10.1016/j.tplants.2020.04.008]
31. Maughan, P. J., Turner, T. B., Coleman, C. E., Elzinga, D. B., Jellen, E. N., Morales, J. A., ... & Bonifacio, A. (2009). Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome, 52(7), 647-657. [
DOI:10.1139/G09-041]
32. Mishra, A., & Tanna, B. (2017). Halophytes: potential resources for salt stress tolerance genes and promoters. Frontiers in plant Science, 8, 829. [
DOI:10.3389/fpls.2017.00829]
33. Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N., & Tyagi, A. (2002). Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theoretical and Applied Genetics, 106, 51-57. [
DOI:10.1007/s00122-002-1063-5]
34. Moog, M. W., Trinh, M. D. L., Nørrevang, A. F., Bendtsen, A. K., Wang, C., Østerberg, J. T., ... & Palmgren, M. (2022). The epidermal bladder cell‐free mutant of the salt‐tolerant quinoa challenges our understanding of halophyte crop salinity tolerance. New Phytologist, 236(4), 1409-1421. [
DOI:10.1111/nph.18420]
35. Morales, A. J., Bajgain, P., Garver, Z., Maughan, P. J., & Udall, J. A. (2011). Physiological responses of Chenopodium quinoa to salt stress. Int. J. Plant Physiol. Biochem, 3, 219-232. [
DOI:10.5897/IJPPB11.026]
36. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59(1), 651-681. [
DOI:10.1146/annurev.arplant.59.032607.092911]
37. Nakamura, T., Nomura, M., Mori, H., Jagendorf, A. T., Ueda, A., & Takabe, T. (2001). An isozyme of betaine aldehyde dehydrogenase in barley. Plant and Cell Physiology, 42(10), 1088-1092. [
DOI:10.1093/pcp/pce136]
38. Nass, R., Cunningham, K. W., & Rao, R. (1997). Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase: insights into mechanisms of sodium tolerance. Journal of Biological Chemistry, 272(42), 26145-26152. [
DOI:10.1074/jbc.272.42.26145]
39. Poustini, K., & Siosemardeh, A. (2004). Ion distribution in wheat cultivars in response to salinity stress. Field crops research, 85(2-3), 125-133. [
DOI:10.1016/S0378-4290(03)00157-6]
40. Pulvento, C., Riccardi, M., Lavini, A., Iafelice, G., Marconi, E., & d'Andria, R. (2012). Yield and quality characteristics of quinoa grown in open field under different saline and non‐saline irrigation regimes. Journal of Agronomy and Crop Science, 198(4), 254-263. [
DOI:10.1111/j.1439-037X.2012.00509.x]
41. Quinoa, F. A. O. (2011). An ancient crop to contribute to world food security. Regional Office for Latin America and the Caribbean, 2, 73-87.
42. Ravari, S. Z., Dehghani, H., & Naghavi, H. (2016). Assessing salinity tolerance of bread wheat varieties using tolerance indices based on K+/Na+ ratio of flag leaf. Cereal Research, 6(2), 133-144.
43. Riccardi, M., Pulvento, C., Lavini, A., d'Andria, R., & Jacobsen, S. E. (2014). Growth and ionic content of quinoa under saline irrigation. Journal of agronomy and crop science, 200(4), 246-260. [
DOI:10.1111/jac.12061]
44. Rosa, M., Hilal, M., Gonzalez, J. A., & Prado, F. E. (2009). Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant physiology and biochemistry, 47(4), 300-307. [
DOI:10.1016/j.plaphy.2008.12.001]
45. Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A. K., Lizardi, S., Covarrubias, A., Martínez, E. A., ... & Zurita-Silva, A. (2011). Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry, 49(11), 1333-1341. [
DOI:10.1016/j.plaphy.2011.08.005]
46. Ruiz, K. B., Biondi, S., Martínez, E. A., Orsini, F., Antognoni, F., & Jacobsen, S. E. (2016). Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 150(2), 357-371. [
DOI:10.1080/11263504.2015.1027317]
47. Ruiz, K. B., Rapparini, F., Bertazza, G., Silva, H., Torrigiani, P., & Biondi, S. (2017). Comparing salt-induced responses at the transcript level in a salares and coastal-lowlands landrace of quinoa (Chenopodium quinoa Willd). Environmental and Experimental Botany, 139, 127-142. [
DOI:10.1016/j.envexpbot.2017.05.003]
48. Saeid Pour, A., Kavousi, H. R., Mohammadi Nezhad, Q., & Khosravi, S. (2015). Gene Expression Analysis of NHX to Salinity stress in Safflower (Carthamustinctorius L.). Journal of Agricultural Biotechnology, 6(4), 91-99. [In Persian]
49. Sakamoto, A., & Murata, N. (2000). Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. Journal of Experimental Botany, 51(342), 81-88. [
DOI:10.1093/jexbot/51.342.81]
50. Seifati, S. E., Ramezanpour, S. S., Soltanloo, H., Salehi, M. & Sepahvand, N. A. J.C.P (2015). Study on Some Morphophenological Traits Related to Yield and Early Maturity in Quinoa Cultivars (Chenopodium quinoa, Wild.). Journal of Crop Production, 8(2), 153-169. [In Persian].
51. Shakib Aylar, A., Farzaneh, S., Moharramnejad, S., Seyed Sharifi, R., & Hasanzadeh, M. (2021). Response of Some Physiological Traits in Maize Cultivars to Salinity Stress. Journal of Crop Breeding, 13(40), 173-180 [In Persian]. [
DOI:10.52547/jcb.13.40.173]
52. Shi, H., Lee, B. H., Wu, S. J., & Zhu, J. K. (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature biotechnology, 21(1), 81-85. [
DOI:10.1038/nbt766]
53. Sun, Y., Liu, F., Bendevis, M., Shabala, S., & Jacobsen, S. E. (2014). Sensitivity of two quinoa (ChenopodiumquinoaWilld.) varieties to progressive drought stress. Journal of Agronomy and Crop Science, 200(1), 12-23. [
DOI:10.1111/jac.12042]
54. Talwar, H. S., Kumari, A., Surwenshi, A., & Seetharama, N. (2011). Sodium: potassium ratio in foliage as an indicator of tolerance to chloride-dominant soil salinity in oat (Avena sativa). Indian Journal of Agricultural Sciences, 81(5), 481.
55. Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in enzymology, 428, 419-438. [
DOI:10.1016/S0076-6879(07)28024-3]
56. Xiong, L., Schumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought, and salt stress. The plant cell, 14(suppl_1), S165-S183. [
DOI:10.1105/tpc.000596]
57. Xu, H., Jiang, X., Zhan, K., Cheng, X., Chen, X., Pardo, J. M., & Cui, D. (2008). Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of biochemistry and biophysics, 473(1), 8-15. [
DOI:10.1016/j.abb.2008.02.018]
58. Yang, W. J., Rich, P. J., Axtell, J. D., Wood, K. V., Bonham, C. C., Ejeta, G., ... & Rhodes, D. (2003). Genotypic variation for glycinebetaine in sorghum. Crop Science, 43(1), 162-169. [
DOI:10.2135/cropsci2003.1620]
59. Zahran, H. H., Marín‐Manzano, M. C., Sánchez‐Raya, A. J., Bedmar, E. J., Venema, K., & Rodríguez‐Rosales, M. P. (2007). Effect of salt stress on the expression of NHX‐type ion transporters in Medicago intertexta and Melilotus indicus plants. Physiologia plantarum, 131(1), 122-130. [
DOI:10.1111/j.1399-3054.2007.00940.x]
60. Zaman, M., Shahid, S. A., & Heng, L. (2018). Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (p. 164). Springer Nature. [
DOI:10.1007/978-3-319-96190-3]
61. Zangishei, Z., & Salari, H. (2016). Monitoring the expression pattern of GeNES coding betaine aldehyde dehydrogenase (BADH) enzymes in Arabidopsis under drought stress. Modern Genetics Journal ,11(3), 349-356. [In Persian].
62. Zhang, Y. M., Zhu, L. L., & Chen, Z. G. (2022). Identification and expression analysis of NHX gene family in quinoa under salt stress. Biotechnology Bulletin, 38(12), 184.
63. Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current opinion in plant biology, 6(5), 441-445. [
DOI:10.1016/S1369-5266(03)00085-2]