دوره 9، شماره 23 - ( پاییز 1396 )                   جلد 9 شماره 23 صفحات 138-145 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hatamnia A A, Darvishzadeh R, Abbaspour N, Rahmani F, Alavi S R, Banaei F. Proteome Analysis of Tobacco (Nicotiana tabacum L.) Leaves under Salt Stress using Two-Dimensional Electrophoresis. jcb. 2017; 9 (23) :138-145
URL: http://jcb.sanru.ac.ir/article-1-882-fa.html
حاتم نیا علی اصغر، درویش زاده رضا، عباس پور ناصر، رحمانی فاطمه، علوی سید رضا، بنایی فرزاد. بررسی تغییرات الگوی پروتئوم برگ گیاه توتون ).(Nicotiana tabacum L تحت تنش شوری با استفاده از الکتروفورز دوبعدی. پژوهشنامه اصلاح گیاهان زراعی. 1396; 9 (23) :138-145

URL: http://jcb.sanru.ac.ir/article-1-882-fa.html


دانشکده کشاورزی دانشگاه ارومیه
چکیده:   (1382 مشاهده)
برای بررسی واکنش گیاه توتون به تنش شوری، آنالیز مقایسه­ای پروتئوم برگ ژنوتیپ Basma S. 31 انجام گرفت. گیاهان به مدت 12 روز در معرض سطوح شوری صفر و 200 میلی­مولار کلرید سدیم در کشت هیدروپونیک قرار گرفتند. پروتئین برگ استخراج شده و به وسیله الکتروفورز دوبعدی جداسازی شد. وزن تر و همچنین طول اندام هوایی در ژنوتیپ مورد مطالعه با افزایش سطح شوری کاهش نشان داد. تحت تنش شوری تعداد  19 لکه پروتئینی (از 468 لکه شناسایی شده) دارای بیان متفاوتی بودند. در حالی­که سطوح برخی از پروتئین­ها به وسیله تیمار شوری کاهش یافت، اما افزایش انباشتگی تعدادی از پروتئین­ها نیز مشاهده شد. در ژنوتیپ مورد مطالعه تعداد لکه­های پروتئینی که در برگ افزایش بیان داشتند بیشتر از تعداد لکه­ های پروتئینی بود که کاهش بیان داشتند (به ترتیب 10 و 9 لکه پروتئینی). نتایج نشان می­دهد که بیشترین و کمترین افزایش بیان مربوط به لکه ­های 16 و 7 به ترتیب با 1/6 و 48/1 برابر افزایش بیان، می­باشد. همچنین بیشترین کاهش بیان در بین لکه ­ها مربوط به لکه پروتئینی 18 با 4/4 برابر کاهش بیان، می­باشد. شوری یک پدیده پیچیده می­باشد که تنها سبب اثرات اسمزی و سمی یونی نمی­شود، بلکه سبب بهم خوردن تعادل مواد غذایی و متابولیسم نیز می­شود. با توجه به نتایج بدست آمده به نظر می­رسد گیاه توتون با تغییر در سطح بیان پروتئین­های مختلف می­تواند شرایط تنش را تا حدودی تحمل کند، به­طوری­که گمان می­رود افزایش بیان پروتئین­های با وزن مولکولی پایین که به احتمال زیاد پروتئین­های تنظیم­کننده فعالیت سلولی هستند، در تحمل تنش شوری موثر باشد.
متن کامل [PDF 549 kb]   (594 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات، بیومتری
دریافت: ۱۳۹۶/۱۰/۲ | ویرایش نهایی: ۱۳۹۸/۱/۲۵ | پذیرش: ۱۳۹۶/۱۰/۲ | انتشار: ۱۳۹۶/۱۰/۲

فهرست منابع
1. Aghaei, K., A.A. Ehsanpour and S. Komatsu. 2008a. Proteome analysis of potato under salt stress. Journal of Proteome Research, 7: 4858-4868. [DOI:10.1021/pr800460y]
2. Aghaei, K., A.A. Ehsanpour, A.H. Shah and S. Komatsu. 2008b. Proteome analysis of soybean hypocotyls and root under salt stress. Amino Acids, 36: 91-98. [DOI:10.1007/s00726-008-0036-7]
3. Amini, F. and A.A. Ehsanpour. 2010. Study of protein changes in tomato (Lycopersicon esculentum) under salt stress using two dimensional electrophoresis Iranian Journal of Plant Biology, 1: 13-24 (In Persian).
4. Aoki, A., A. Kanegami, M. Mihara, T.T. Kojima, M. Shiraiwa and H. Takahara. 2005. Molecular cloning and characterization of a novel soybean gene encoding a leucine-zipper-like protein induced to salt stress. Gene, 356: 135-145. [DOI:10.1016/j.gene.2005.04.014]
5. Bradford, M.M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. [DOI:10.1006/abio.1976.9999]
6. Bybordi, A., S.J. Tabatabaei and A. Ahmedov. 2010. The influence of salinity stress on antioxidant activity in canola cultivars (Brassica napus L.). Journal of Food, Agriculture & Environment, 8: 122-127.
7. Celik, O. and C. Atak. 2012. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turkish Journal of Biology, 36: 339-356.
8. Damerval, C., D. De Vienne, M. Zivy and H. Thiellement. 1986. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis, 7: 52-54. [DOI:10.1002/elps.1150070108]
9. Dani, V., W.J. Simon, M. Duranti and R.R.D. Croy. 2005. Changes in the tobacco leaf apoplast proteome inresponse to salt stress. Proteomics, 5: 737-745. [DOI:10.1002/pmic.200401119]
10. Deng, C.N., G.X. Zhang, X.L. Pan and K.Y. Zhao. 2010. Chlorophyll fluorescence and gas exchange responses of maize seedlings to saline-alkaline stress. Bulgarian Journal of Agricultural Science, 16: 49-58.
11. Dooki, A.D., F.J. Mayer-Posner, H. Askari, A.A. Zaiee and G.H. Salekdeh. 2006. Proteomic responses of rice young panicles to salinity. Proteomics, 6: 6498-6507. [DOI:10.1002/pmic.200600367]
12. Fatehi, F., A. Hosseinzadeh, H. Alizadeh, M. Haji Abbasi and A. Shabani. 2011. The study of proteomic salinity responses in barley. Iranian Journal of Field Crop Science, 42: 617-626 (In Persian).
13. Ghasemi Bezdi, K. and B. Aidin. 2013. Study of callus formation and salinity tolerance in different explants of cotton (Gossypium sp.) cultivars in vitro. Journal of Crop Breeding, 4(10): 94-108 (In Persian).
14. Hajheidari, M., M. Abdollahian-Noghabi, H. Askari, M. Heidari, S.Y. Sadeghian, E.S. Ober and G. Hosseini Salekdeh. 2005. Proteome analysis of sugar beet leaves under drought stress. Proteomics, 5: 950-960. [DOI:10.1002/pmic.200401101]
15. Hasaneen, M.N.A., M.E. Younis and S.M.N. Tourky. 2009. Plant growth, metabolism and adaptation in relation to stress conditions XXIII. Salinity-biofertility interactive effects on growth, carbohydrates and photosynthetic efficiency of Lactuca sativa. Plant Omics, 2: 60-69.
16. Jiang, Y., B. Yang, N.S. Harris and M.K. Deyholos. 2007. Comparative proteomic analysis of NaCl stress- responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 58: 3591-3607. [DOI:10.1093/jxb/erm207]
17. Kanlaya, K.N., D. Sakda, W. Chaisiri, B. Sumontip, K. Manit and T. Piyada. 2005. Protein profiles in response to salt stress in leaf sheaths of rice seedlings. Science Asia, 31: 403-408.
18. Munir, S., E.H. Siddiqi, K.H. Bhatti, K. Nawaz, K. Hussain, R. Rashid and I. Hussain. 2013. Assessment of inter-cultivar variations for salinity tolerance in winter radish (Raphanus sativus L.) using photosynthetic attributes as effective selection criteria. World Applied Sciences Journal, 21: 384-388.
19. Nemati, I., F. Moradi ,M.A. Esmaeili and S. Gholizadeh. 2011. Change in soluble sugars and mineral ions distribution pattern in rice seedlings grown under saline condition. Journal of Crop Breeding, 3(8): 62-80 (In Persian).
20. O' Farrell, P.H. 1975. High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 250: 4007-4021.
21. Parida, A.K. and A.B. Das. 2005. Salt tolerance and salinity effect on plants: a review. Ecotoxicology and Environmental Safety, 60: 324-349. [DOI:10.1016/j.ecoenv.2004.06.010]
22. Parker, R., T.J. Flowers, A.L. Moorem and N.V.J. Harpham. 2006. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. Journal of Experimental Botany, 57:1109-1118. [DOI:10.1093/jxb/erj134]
23. Razavizadeh, R., A.A. Ehsanpour, N. Ahsan and S. Komatsu. 2009. Proteome analysis of tobacco leaves under salt stress. Peptids, 30: 1651-1659. [DOI:10.1016/j.peptides.2009.06.023]
24. Sobhanian, H., K. Aghaei and S. Komatsu. 2011. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? Journal of Proteomics, 74: 1323-1337. [DOI:10.1016/j.jprot.2011.03.018]
25. Sobhanian, H., R. Razavizadeh, Y. Nanjo, A.A. Ehsanpour, F. Rastgar Jazii, N. Motamed and S. Komatsu. 2010. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Science, 8: 1-15. [DOI:10.1186/1477-5956-8-19]
26. Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428:419-438. [DOI:10.1016/S0076-6879(07)28024-3]
27. Wang, M.C., Z.Y. Peng, C.L. Li, F. Li, C. Liu and G.M. Xia. 2008. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics, 8: 1470-1489. [DOI:10.1002/pmic.200700569]
28. Zhang, Y.Y., J.B. Lai, S.H. Sun, Y. Li, Y.Y. Liu, L.M. Liang, M.S. Chen and Q. Xie. 2008. Comparison analysis of transcripts from the halophyte Thellungiella halophila. Journal of Integrative Plant Biology, 50:1327-1335. [DOI:10.1111/j.1744-7909.2008.00740.x]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb