دوره 9، شماره 23 - ( پاییز 1396 )                   جلد 9 شماره 23 صفحات 137-125 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zare F, Ranjbar G A, Tarang A R, Najafi Zarrini H. (2017). Identification of Up-regulated Transcripts in Salt Tolerant Rice (Oryza sativa L.) Cultivar using the cDNA-AFLP Technique. jcb. 9(23), 125-137. doi:10.29252/jcb.9.23.125
URL: http://jcb.sanru.ac.ir/article-1-880-fa.html
زارع فاطمه، رنجبر غلامعلی، ترنگ علیرضا، نجفی زرینی حمید. شناسایی رونوشت‌های با افزایش تظاهر در رقم برنج (Oryza sativa L.) مقاوم به تنش شوری با استفاده از تکنیک cDNA-AFLP پژوهشنامه اصلاح گیاهان زراعی 1396; 9 (23) :137-125 10.29252/jcb.9.23.125

URL: http://jcb.sanru.ac.ir/article-1-880-fa.html


دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده:   (3769 مشاهده)
تنش شوری یکی از مهم­ترین تنش­های غیرزیستی برای برنج است که به­طور منفی رشد و باروری آن را متأثر می­سازد. در این پژوهش اثرات تنش شوری بر بیان افتراقی برخی از ژن­های مسئول در تنش شوری در دو ژنوتیپ برنج متحمل و حساس به شوری (FL478 و IR29) با استفاده از تکنیک cDNA-AFLP مورد بررسی قرار گرفت. از میان TDFهای (Transcript Derived Fragments یا قطعات حاصل از رونوشت­ها) حاصل از 2 آنزیم برشی و 18 ترکیب آغازگری که در پاسخ به تنش شوری در رقم مقاوم در مقایسه با تیمار شاهد و حساس افزایش بیان نشان داده بودند 28 TDF جدا شد که در نهایت 21 عدد از آن­ها کلون، توالی­یابی و در بانک ژن ثبت گردیدند و سپس با استفاده از الگوریتم بلاست مورد آنالیز قرار گرفتند. TDFهای شناسایی شده در این مطالعه متعلق به گروه­های متفاوتی از ژن­ها شامل متابولیسم، ترارسانی سیگنال، فاکتورهای رونویسی، سمیت­زدایی، سیستم ترانسپورت و دیگر مکانیسم­های مرتبط با تنش شوری بودند که این امر بیانگر آن است که تعداد زیادی از فرآیندها در پاسخ به تنش شوری درگیر هستند. سپس تعدادی از این ژن­ها برای تأئید الگوهای بیانی به دست آمده توسط cDNA-AFLP با استفاده از آنالیز Real time PCR انتخاب گردیدند که نتایج به دست آمده از این آزمایش الگوهای بیانی ردیابی شده با استفاده از تکنیک cDNA-AFLP را تأئید نمود. نتایج این تحقیق نشان داد که cDNA-AFLP تکنیک قدرتمندی برای بررسی الگوی بیان ژن­های برنج تحت تنش شوری می­باشد. علاوه بر این یافته­های ما به روشن نمودن اساس مولکولی اثرات تنش شوری بر ژنوم برنج و شناسایی ژن­هایی که می­توانند تحمل به شوری برنج را افزایش دهند کمک می­نماید.
واژه‌های کلیدی: تنش شوری، cDNA-AFLP، رونوشت، بیان ژن، برنج
متن کامل [PDF 843 kb]   (1651 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات، بیومتری
دریافت: 1396/10/2 | ویرایش نهایی: 1398/1/25 | پذیرش: 1396/10/2 | انتشار: 1396/10/2

فهرست منابع
1. Akihiro, T., T. Umezawa, C. Ueki, B.M. Lobna., K. Mizuno, M. Ohata and T. Fujimura. 2006. Genome wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells. FEBS Letters, 580: 5947-5952. [DOI:10.1016/j.febslet.2006.09.065]
2. Anderson, J.V. and D.G. Davis. 2004. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiologica Plantarum, 120: 421-433. [DOI:10.1111/j.0031-9317.2004.00249.x]
3. Bachem, C.W.B., R.S. Hoeven, S.M. Bruijn, D. Vreugdenhil, M. Zabeau and R.G.F. Visser. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant Journal, 9: 745-53. [DOI:10.1046/j.1365-313X.1996.9050745.x]
4. Bianchi, M.W., C. Roux and N. Vartanian. 2002. Drought regulation of GST8, encodes the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiologica Plantarum, 116: 96-105. [DOI:10.1034/j.1399-3054.2002.1160112.x]
5. Chen, J.H., H.W. Jiang, E.J. Hsieh, H.Y. Chen, C.T. Chien, H. Lhsieh and T.P. Lin. 2012. Drought and salt stress tolerance of an Arabidopsis Glutathione S -Transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiology, 158: 340-351. [DOI:10.1104/pp.111.181875]
6. Chen, W., N.J. Provart, J. Glazebrook, F. Katagiri, H.S. Chang, T. Eulgem, F. Mauch, S. Luan, G. Zou, S.A. Whitham, P.R. Budworth, Y. Tao, X. Xie, X. Chen, S. Lam, J.A. Kreps, J.F. Harper, A. Si-Ammour, B. Mauch-Mani, M. Heinlein, K. Kobayashi, T. Hohn, J.L. Dangl, X. Wang and T. Zhu. .2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 14: 559-574. [DOI:10.1105/tpc.010410]
7. Chi, W., J.H. Yang, N.H. Wu and F. Zhang. 2004. Four rice genes encoding NADP-ME exhibit distinct expression profiles. Bioscience, Biotechnology and Biochemistry, 68: 1865-1874. [DOI:10.1271/bbb.68.1865]
8. Ciuzan, O., J. Hancock, D. Pamfil, I. Wilson and M. Ladomery. 2015. The evolutionarily conserved multi-functional glycine-rich RNA-binding proteins play key roles in development and stress adaptation. Physiologica Plantarum, 153: 1-11. [DOI:10.1111/ppl.12286]
9. Cordin, O., J. Banroques, N.K. Tanner and P. Linder. 2006. The DEAD-box protein family of RNA helicases. Gene, 367: 17-37. [DOI:10.1016/j.gene.2005.10.019]
10. Das, S., R. Basu and B. Ghosh. 1987. Heat stress induced polyamine accumulation in cereal seedlings. Plant Physiology and Biochemistry, 14: 108-116.
11. Davies, D.D. 1986. The fine control of cytosolic pH. Physiology of Plant, 67: 702-706. [DOI:10.1111/j.1399-3054.1986.tb05081.x]
12. Dinari, A., A. Niazi, A.R. Afsharifar and A. Ramezani. 2013. Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA-AFLP approach. PLOS One, 8: 527-533. [DOI:10.1371/journal.pone.0052757]
13. Dreyfuss, G., V.N. Kim and N. Kataoka. 2002. Messenger-RNA-binding proteins and and the messages they carry. Nature Reviews Molecular Cell Biology, 3: 195-205. [DOI:10.1038/nrm760]
14. Dubouzet, J.G., Y. Sakuma, Y. Ito, M. Kasuga, E.G. Dubouzet, S. Miura, M. Seki, K. Shinozaki and K. Yamaguchi-Shinozaki. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 33: 751-63. [DOI:10.1046/j.1365-313X.2003.01661.x]
15. Felle, H.H. 2001. PH: signal and messenger in plant cells. Plant Biology, 3: 577-591. [DOI:10.1055/s-2001-19372]
16. Fushimi, T., M. Umeda, T. Shimazaki, A. Kato, K. Toriyama and H. Uchimiya. 1994. Nucleotide sequence of a rice cDNA similar to a maize NADP-dependent malic enzyme. Plant Molecular Biology, 24: 965-967. [DOI:10.1007/BF00014450]
17. Gong, X., M. Liu, L. Zhang, Y. Ruan, R. Ding, Y. Ji, N. Zhang, S. Zhang, J. Farmer and C. Wang. 2015. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiologia Plantarum, 153: 119-136. [DOI:10.1111/ppl.12225]
18. Ibraheem, O., G. Dealtry, S. Roux and G. Bradley. 2011. The effect of drought and salinity on the expressional levels of sucrose transporters in rice (Oryza sativa Nipponbare) cultivar plants. Plant Omics Journal, 4: 68-74.
19. Jha, B., A. Sharma and A. Mishra. 2011. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Molecular Biology Reports, 38: 4823-4832. [DOI:10.1007/s11033-010-0625-x]
20. Ji, W., Y. Zhu, Y. Li, L. Yang, X. Zhao, H. Cai and X. Bai. 2010. Over-expression of a glutathione
21. S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnology Letters, 32: 1173-1179. [DOI:10.1007/s10529-010-0269-x]
22. Kawasaki, S., C. Borchert, M. Deyholos, H. Wang, S. Brazilles, K. Kawai, D. Galbraith and H. J. Bohnert. 2001. Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 13: 889-905. [DOI:10.1105/tpc.13.4.889]
23. Kawousi. 2001. Effect of different nitrogen and potassium levels on rice yield. Rasht research deputy, 24 pp (In Persian).
24. Kreps, J.A., Y. Wu, H.S. Chang, T. Zhu, X. Wang and J.F. Harper. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 130: 2129-41. [DOI:10.1104/pp.008532]
25. Krishna, R. and K.A. Bhagwat. 1989. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology, 91: 500-504. [DOI:10.1104/pp.91.2.500]
26. Kumar, V., V. Shriram, T.D. Nikam, N. Jawali and M.G. Shitole. 2008. Sodium chloride-induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance. Journal of Plant Nutrition, 31: 1999-2017. [DOI:10.1080/01904160802403466]
27. Li, T., E. Evdokimov, R.F. Shen, C.C. Chao, E. Tekle, T. Wang, E.R. Stadtman, D.C. Yang and P.B. Chock. 2004. Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins and nuclear pore complex proteins: A proteomic analysis. Proceedings of the National Academy of Sciences, 101: 8551-8556. [DOI:10.1073/pnas.0402889101]
28. Liu, S., Y. Cheng, X. Zhang, Q. Guan, S. Nishiuchi, K. Hase and T. Takano. 2007. Expression of an NADP-malic enzyme gene in rice (Oryza sativa L.) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Molecular Biology, 64: 49-58. [DOI:10.1007/s11103-007-9133-3]
29. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402-408. [DOI:10.1006/meth.2001.1262]
30. Mannas, K.C., S. Gupta, D.N. Sengupta and B. Ghosh. 1997. Expression of arginine decarboxylase in seedling of indica rice (Oryza sativa L.) cultivars affected by salinity stress. Plant Molecular Biology, 34: 477-483. [DOI:10.1023/A:1005802320672]
31. Munnik, T., W. Ligterink, I. Meskiene, O. Calderini, J. Beyerly, A. Musgrave and H. Hirt. 1999. Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant Journal, 20: 381-388. [DOI:10.1046/j.1365-313x.1999.00610.x]
32. Marrs, K.A. 1996. The functions and regulation of glutathione s-transferases in plants. Annual Review of Plant Physiology, 1996. 47: 127-58. [DOI:10.1146/annurev.arplant.47.1.127]
33. Martinoia, E. and D. Rentsch. 1994. Malate compartmentation: responses to a complex metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 45: 447-467. [DOI:10.1146/annurev.pp.45.060194.002311]
34. McNeil, S.D., M.L. Nuccio, M.J. Ziemak and A.D. Hanson. 2001. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase Proceeding of National Academy Science, 98: 10001-10005. [DOI:10.1073/pnas.171228998]
35. Moller, I.M. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology, 52: 561-591. [DOI:10.1146/annurev.arplant.52.1.561]
36. Moller, I.M. and A.G. Rasmusson. 1998. The role of NADP in the mitochondrial matrix. Trends in Plant Science, 3: 21-27. [DOI:10.1016/S1360-1385(97)01156-4]
37. Mou, Z., X. Wang, Z. Fu, Y. Dai, C. Han, J. Ouyang, F. Bao, Y. Hu and J. Li. 2002. Silencing of phosphoethanolamine N- methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. The Plant Cell, 14: 2031-2043. [DOI:10.1105/tpc.001701]
38. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell and Environment, 25: 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
39. Munnik, T., W. Ligterink, I. Meskiene, O. Calderini, J. Beyerly, A. Musgrave and H. Hirt. 1999. Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant Journal, 20: 381-388. [DOI:10.1046/j.1365-313x.1999.00610.x]
40. Owttrim, G.W. 2006. RNA helicases and abiotic stress. Nucleic Acids Research, 1: 3220-3230. [DOI:10.1093/nar/gkl408]
41. Pessarakli, M and I. Szabolcs. 1999. Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress. Dekker, New York, pages: 3-21. [DOI:10.1201/9781351104609-1]
42. Pham, X.H., M.K. Reddy, N.Z. Ehtesham, B. Matta and N. Tuteja. 2000. A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. Plant Journal, 24: 219-229. [DOI:10.1046/j.1365-313x.2000.00869.x]
43. Priebe, A. and H.I. Jagar. 1978. Effect of NaCl on the levels of putrescine and related polyamines in plants differing in salt tolerance. Plant Science Letters, 12: 365-369. [DOI:10.1016/0304-4211(78)90092-5]
44. Rodríguez, M., M.C. González, E. Cristo, O. Oliva, M. Pujol and O. Borrás-Hidalgo. 2013. Identification of genes with altered expression levels in contrasting rice cultivars exposed to salt stress treatments. Biotecnología Aplicada, 30: 178-181.
45. Shavrukov, Y. 2013. Salt stress or salt shock: which genes are we studying? Journal of Experimental Botany, 64: 119-127. [DOI:10.1093/jxb/ers316]
46. Sinah, A.K., M. Jaggi, B. Raghuram and N. Tuteja. 2011. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signaling and Behavior, 6: 196-203. [DOI:10.4161/psb.6.2.14701]
47. Smith, T.A. 1973. Amine levels in mineral deficient Hordeum vulgare leaves. Phytochemistry, 12: 2093-2100. [DOI:10.1016/0031-9422(73)85106-4]
48. Song, Y., Z. Wang, W. Bo, Y. Ren, Z. Zhang and D. Zhang. 2012. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis. BMC Genomics, 13: 286-304. [DOI:10.1186/1471-2164-13-286]
49. Summers, P. and E.A. Weretilnyk. 1993. Choline synthesis in spinach in relation to salt stress. Plant Physiology, 103: 1269-1276. [DOI:10.1104/pp.103.4.1269]
50. Tabor, C.W. and H. Tabor. 1984. Polyamines. Annual Review of Biochemistry, 53: 749-790. [DOI:10.1146/annurev.biochem.53.1.749]
51. Turner, L.B. and G.R. Stewart. 1986. The effect of water stress upon polyamine levels in barley (Hordeum vulgare L.) leaves. Journal of Experimental Botany, 37: 170-177. [DOI:10.1093/jxb/37.2.170]
52. Verslues, P.E., M.A. Garwal, S. Katiyar-Agarwal, J. Zhu and J.K. Zhu. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal, 45: 523-539. [DOI:10.1111/j.1365-313X.2005.02593.x]
53. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman and M. Kuiper. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407-4414. [DOI:10.1093/nar/23.21.4407]
54. Wang, X., W. Liu, X. Chen, C. Tang, Y. Dong, J. Ma, X. Huang, G. Wei, Q. Han, L. Huang and Z. Kang. 2010. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 10: 1-15. [DOI:10.1186/1471-2229-10-9]
55. Weretilnyk, E.A., D.D. Smith, G.A. Wilch and P.S. Summers. 1995. Enzymes of Cho synthesis in spinach: Response of P-base N-methyltransferase activities to light and salinity. Plant Physiology, 109: 1085-1091. [DOI:10.1104/pp.109.3.1085]
56. Xu, D., X. Duan, B. Wang, B. Hong, T. Ho and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 110: 249-257. [DOI:10.1104/pp.110.1.249]
57. Zheng, L., M.C. Shannon and S.M. Lesch. 2001. Timing of salinity stress affects rice growth and yield components. Agricultural Water Management, 48: 191-206. [DOI:10.1016/S0378-3774(00)00146-3]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb