Volume 9, Issue 22 (9-2017)                   jcb 2017, 9(22): 1-13 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

(2017). Validation of Candidate Markers Drought Tolerance in Soybean Genotypes under Normal and Drought Stress Condition . jcb. 9(22), 1-13. doi:10.29252/jcb.9.22.1
URL: http://jcb.sanru.ac.ir/article-1-833-en.html
Abstract:   (4590 Views)
The validity test of the linked markers to identified QTLs is as a necessary step before performing marker assisted selection. In the present study were conducted validity test of 21 microsatellite markers associated to drought tolerance using 121 soybean varieties and advanced lines and planting in two condition normal and under drought stress at two regions Rasht and Gonbad-Kavous. In investigation of population genetic diversity, the average of allele number per marker, 5.53 alleles and average of polymorphic information content (PIC), Nei genetic diversity coefficient (H) and Shannon index (I) were estimated 0.73, 0.77 and 1.57 respectively that high values of these statistics shows their ability to separate studied varieties and lines. The structure and cluster analysis based on bayesian approach and neighbor joining method assigned the cases to three subpopulation and three groups respectively. The association analysis between microsatellite markers and yield related traits using GLM and MLM by three statistic models revealed Satte454, Satt345, Satte210, Sat_292, Satt142, Satt339, Satt249 and Satt458 were confirmed in this genetic background and identified as the most effective markers. The highest percent of variation explanation were dedicated to Sat_292 and Satt454 with more than 18 percent variation explanation of seed weight in all plant pods in normal and drought condition respectively.
 
Full-Text [PDF 772 kb]   (1451 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2017/10/9 | Revised: 2017/10/29 | Accepted: 2017/10/9 | Published: 2017/10/9

References
1. Alizadeh, A. 2011. Soil, Water, Plant Relationship. Ferdowsi University of Mashhad, Iran, 722 pp
2. (In Persian).
3. Arzani, A. 2011. Breeding Field Crops-Fourth Edition. Isfahan University of Technology Publication Center, 627 pp (by John Milton; Sleper, David Allen Poehlman).
4. Bhatnagar, S.C., A. King, L. Purcell and J.D. Ray. 2005. Identification and Mapping of Quantitative Trait Loci Associated with Crop Responses to Water-deficit Stress in Soybean [Glycine max (L.) Merr.]. International annual meeting, 18-25 pp. Salt Lake City, UT.
5. Bradbury, P.J., Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss and E.S. Buckler. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23: 2633-2635. [DOI:10.1093/bioinformatics/btm308]
6. Burton, J. and L. Miranda. 2013. Soybean Improvement: Achievements and Challenges. Ratarstvo i Povrtarstvo, 50: 44-51. [DOI:10.5937/ratpov50-4158]
7. Carpentieri-Pipolo, V., A. Pipolo, H. Abdel-Haleem, H. Boerma and T. Sinclair. 2012. Identification of QTLs associated with limited leaf hydraulic conductance in soybean. Euphytica, 186: 679-686. [DOI:10.1007/s10681-011-0535-6]
8. Dong, D., X. Fu, F. Yuan, P. Chen, S. Zhu, B. Li, Q. Yang, X. Yu and D. Zhu. 2014. Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Genetic Resources and Crop Evolution, 61: 173-183 [DOI:10.1007/s10722-013-0024-y]
9. Du, W.J., S.X. Fu and D.Y. Yu. 2009a. Genetic analysis for the leaf pubescence density and water status traits in soybean [Glycine max (L.) Merr.]. Plant Breeding, 128: 259-265. [DOI:10.1111/j.1439-0523.2008.01588.x]
10. Du, W.J., M. Wang, S. Fu and D. Yu. 2009b. Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. Journal of Genetics and Genomics, 36: 721-731. [DOI:10.1016/S1673-8527(08)60165-4]
11. Evanno, G., E. Reganut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. [DOI:10.1111/j.1365-294X.2005.02553.x]
12. FAO. 2014. Food Agriculture Organization statistics on line. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor
13. Faraji. A. 2014. Evaluation the Response of Soybean (Glycin Max L.) Genotypes to Drought Stress. Journal of crop breeding, 6: 27-40 (In Persian).
14. Gupta, P.K., S. Rustgi and P.L. Kulwal. 2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 57: 461-485. [DOI:10.1007/s11103-005-0257-z]
15. Kato, S., T. Sayama, K. Fujii, S. Yumoto, Y. Kono, T.Y. Hwang, A. Kikuchi, Y. Takada, Y. Tanaka, T. Shiraiwa. 2014. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theoretical and Applied Genetics, 127: 1365-1374. [DOI:10.1007/s00122-014-2304-0]
16. Lee, GA, Y.M. Choi, J.Y. Yi, J.W. Chung, M.C. Lee, K.H. Ma, S.Y. Lee, J.W. Cho and J.R. Lee. 2014. Genetic Diversity and Population Structure of Korean Soybean Collection Using 75 Microsatellite Markers. Korean Journal of Crop Science, 59: 492-497. [DOI:10.7740/kjcs.2014.59.4.492]
17. Lee, JD, T.D. Vuong, H. Moon, J.K. Yu, R. Nelson, H.T. Nguyen and J.G. Shannon. 2011. Genetic diversity and population structure of Korean and Chinese soybean [Glycine max (L.) Merr.] accessions Crop Science, 51: 1080-1088. [DOI:10.2135/cropsci2010.07.0420]
18. Li, D., T.W. Pfeiffera and P.L. Corneliusb. 2008. Soybean QTL for yield and yield components associated with glycine soja alleles. Crop Science Society of America, 48: 571-581. [DOI:10.2135/cropsci2007.06.0361]
19. Li, Y.H., M.J.M. Smulders, R.Z. Chang and L.J. Qiu. 2011. Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis. Conservation Genetics, 12: 1145-1157. [DOI:10.1007/s10592-011-0216-y]
20. Lian, Q., C. Xiaohui, M. Mantong, Y. Xiaolong and L. Hong. 2010. QTL analysis of root traits as related to phosphorus efficiency in soybean. Annals of Botany, 106: 223-234. [DOI:10.1093/aob/mcq097]
21. Malekmohamad, Z., H. Sabori, A. Biabani and E. Hezarjaribi. 2016. Study of genetic diversity of soybean (Glycine max) using ISSR markers. Journal of crop breeding, 8: 124-133 (In Persian).
22. Monteros, M.J., G. Lee, A.M. Missaoui, T.E. Carter and H.R. Boerma. 2006. Identification and confirmation of QTL conditioning drought tolerance in Nepalese soybean. The 11th Biennial Conference on the Molecular and Cellular Biology of the Soybean, Abstract PI471938. Lincoln, USA.
23. Nicholas, F.W. 2006. Discovery, validation, and delivery of DNA markers. Australian Journal of Experimental Agriculture, 46: 155-158. [DOI:10.1071/EA05228]
24. Pathan, M.S., J.D. Lee, J.G. Shannon and H.T. Nguyen .2007. Recent advances in breeding for drought and salt stress tolerance in soybean. In: Advances in molecular-breeding toward drought and salt tolerant crops. Jenks MA, Hasegawa PM and Jain SM (eds), Springer USA.
25. Pocovi, M.I. and J.A. Mariotti. 2015. A bayesian approach to inferring the genetic population structure of sugarcane accessions from INTA (Argentina). Chilean journal of agricultural research. 75: 152-159. [DOI:10.4067/S0718-58392015000200003]
26. Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945-959.
27. Saghai Maroof, M.A., R.M. Biyashev, G.P. Yang, Q. Zhang and R.W. Allard. 1994. Extraordinarily polymorphic microsatellite DNA in barely species diversity, chromosomal location, and population dynamics, proceeding of the National Academy of Sciences. USA. 91: 5466-5570. [DOI:10.1073/pnas.91.12.5466]
28. Samnonsa, D.J., D.B. Peters and T. Himowitz. 1979. Screening soybeans for drought resistance. II. Drought box procedure. Crop Science, 19: 719. [DOI:10.2135/cropsci1979.0011183X001900050043x]
29. Samnonsa, D.J., D.B. Peters and T. Himowitz .1980. Screening soybeans for tolerance to moisture stress: a field procedure. Field Crop Research, 3: 321. [DOI:10.1016/0378-4290(80)90038-6]
30. Sanguinetti, C.J., E. Dias Neto and A.J.G. Simpson. 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 17: 915-919.
31. Shannon, C.E. and W. Weaver. 1963. The mathematical theory of communication. University of Illinois Press, Urbana, Ill.
32. Soliman-Mona, M. 2003. Effect of some irrigation region on water consumptive use on growth analysis for some soybean cultivars. Agric. Mansora Univ. Journal of Agricultural Science, 28: 4849-4258.
33. Vieira, A.J.D., D.A.D.E. Oliveira, T.C.B. Soares, I. Schuster, N.D. Piovesan, C.A. Martínez, E.G.D.E. Barros and M.A. Moreira. 2006. Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Brazilian Journal of Plant Physiology, 18: 281-290. [DOI:10.1590/S1677-04202006000200004]
34. Vu Hang, T.T., A. Kilian, A.T. James, L.M. Bielig and R.J. Lawn. 2015. Use of DArT molecular markers for QTL analysis of drought-stress responses in soybean. II. Marker identification and QTL analyses. Crop and Pasture Science, 66: 817-830. [DOI:10.1071/CP14304]
35. Yeh, F.C., R.C. Yang, T.B.J. Boyle, Z.H. Ye and J.X. Mao. 1997. POPGENE, the user-friendly shareware for population genetic analysis Molecular Biology and Biotechnology Centre, University of Alberta, Alberta, Canada.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb