دوره 11، شماره 30 - ( تابستان 1398 )                   جلد 11 شماره 30 صفحات 133-141 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahdavi Mashaki K, Nasrollahnezhad Ghomi A A, Zaynali Nezhad K, Yamchi A, Soltanloo H, Thudi M et al . Transcription Factors Evaluation in a Transcriptome Analysis on Chickpea (Cicer arietinum L.) Under Drought Stress . jcb. 2019; 11 (30) :133-141
URL: http://jcb.sanru.ac.ir/article-1-783-fa.html
مهدوی ماشکی کیوان، نصراله‌نژاد قمی علی اصغر، زینلی‌نژاد خلیل، یامچی احد، سلطانلو حسن، تودی ماهاندر و همکاران.. ارزیابی عوامل رونویسی در یک مطالعه ترانسکریپتوم در نخود (Cicer arietinum L.) در شرایط تنش خشکی . پژوهشنامه اصلاح گیاهان زراعی. 1398; 11 (30) :133-141

URL: http://jcb.sanru.ac.ir/article-1-783-fa.html


دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده:   (130 مشاهده)

 تنش خشکی اثرات زیانباری بر رشد و تولید بسیاری از گیاهان از جمله گیاهان زراعی دارد. نخود (Cicer arietinum L.) به­عنوان یکی از مهم­ترین حبوبات، در معرض تنش خشکی انتهایی در مناطق خشک و نیمه‌خشک قرار می‌گیرد. عوامل رونویسی نقش‌های کلیدی مهمی در انتقال پیام و واکنش سازگاری به تنش‌های غیرزیستی نظیر خشکی ایفا می‌کنند. در مطالعه حاضر، عوامل رونویسی در یک مطالعه ترانسکریپتوم در بافت‌های ریشه و اندام هوایی در دو رقم نخود کابلی با سطوح متفاوت تحمل به خشکی، شامل بیونیج (متحمل) و هاشم (حساس) ارزیابی گردید. از 4572 ژن افتراقی، 1806 ژن به­عنوان عوامل رونویسی با استفاده از جستجو در پایگاه عوامل رونویسی گیاهی (PTFD) شناسایی شدند. بیشترین اعضا (101) به خانواده bHLH تعلق داشت و خانواده‌های ERF (87)، kinase superfamily (76)، NAC (74)، MYB (72)، WRKY (72) و غیره در رتبه‌های بعدی قرار گرفتند. مقایسه ارقام متحمل (بیونیج) و حساس (هاشم) در شرایط خشکی نشان داد که توزیع عوامل رونویسی به نوع رقم و بافت نمونه‌برداری شده بستگی دارد. خانواده‌های عوامل رونویسی شامل B3، NAC، MYB، WRKY و bHLH و غیره در پاسخ به تنش خشکی بیشترین اعضاء را داشتند. همچنین، نتایج نشان داد که چندین عامل رونویسی که در واکنش‌های مربوط به تنش‌های غیرزیستی و مسیرهای بیوسنتزی مهم نظیر بیوسنتز اسید آبسزیک و پرولین درگیر بودند، در بافت هوایی رقم بیونیج بیان بالاتری نسبت به رقم هاشم داشتند که نشان‌دهنده نقش بیشتر بافت هوایی در القای تحمل به خشکی در رقم متحمل بود. به‌طور کلی، یافته‌های این تحقیق محققان را در درک بهتر انتقال پیام و شبکه‌های تنظیمی درگیر در تنش‌ها در گیاه نخود یاری می‌کند و زمینه برای استفاده از عوامل رونویسی کلیدی و بهبود تحمل به تنش خشکی از طریق مهندسی ژنتیک را فراهم می‌کند.

متن کامل [PDF 474 kb]   (42 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات مولكولي
دریافت: ۱۳۹۶/۴/۱۱ | ویرایش نهایی: ۱۳۹۸/۶/۲۰ | پذیرش: ۱۳۹۶/۶/۲۱ | انتشار: ۱۳۹۸/۶/۲۰

فهرست منابع
1. Agarwal, G., V. Garg, H. Kudapa, D. Doddamani, L.T. Pazhamala and A.W. Khan. 2016. Genome‐wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnology Journal, 14: 1563-1577. [DOI:10.1111/pbi.12520]
2. Ahmad, F., P. Gaur and J. Croser. 2005. Chickpea (Cicer arietinum L.). Genetic Resources, Chromosome Engineering and Crop Improvement-Grain Legumes, 1: 185-214. [DOI:10.1201/9780203489284.ch7]
3. Ahuja, I., R.C. de Vos, A.M. Bones and R.D. Hall. 2010. Plant molecular stress responses face climate change. Trends in Plant Science, 15: 664-674. [DOI:10.1016/j.tplants.2010.08.002]
4. Anbazhagan, K., P. Bhatnagar-Mathur, V. Vadez, S.R. Dumbala, P.K. Kishor and K.K. Sharma. 2015. DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Reports, 34: 199-210. [DOI:10.1007/s00299-014-1699-z]
5. Bates, B. 2009. Climate Change and Water: IPCC technical paper VIWorld Health Organization, 101 p.
6. Bengtsson, M., Y. Shen and T. Oki. 2006. A SRES-based gridded global population dataset for 1990-2100. Population and Environment, 28: 113-131. [DOI:10.1007/s11111-007-0035-8]
7. Bhargava, S. and K. Sawant. 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132: 21-32. [DOI:10.1111/pbr.12004]
8. Bhattacharjee, A. and M. Jain. 2013. Transcription factor mediated abiotic stress signaling in rice. Plant Stress, 7: 16-25.
9. Chaves, M., J. Flexas and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103: 551-560. [DOI:10.1093/aob/mcn125]
10. Danquah, A., A. de Zelicourt, J. Colcombet and H. Hirt. 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances, 32: 40-52. [DOI:10.1016/j.biotechadv.2013.09.006]
11. Farshadfar, E. and J. Javadinia. 2011. Evaluation of chickpea (Cicer arietinum L.) genotypes for drought tolerance. Seed and Plant Improvement Journal, 27(1): 517-537 (In Persian).
12. Gao, W.R., X.S. Wang, Q.Y. Liu, H. Peng, C. Chen, J.G. Li, J.S. Zhang, S.N. Hu and H. Ma. 2008. Comparative analysis of ESTs in response to drought stress in chickpea (C. arietinum L.). Biochemical and Biophysical Research Communications, 376: 578-583. [DOI:10.1016/j.bbrc.2008.09.030]
13. Garg, R., A. Bhattacharjee and M. Jain. 2015. Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Molecular Biology Reporter, 33: 388-400. [DOI:10.1007/s11105-014-0753-x]
14. Garg, R., R. Shankar, B. Thakkar, H. Kudapa, L. Krishnamurthy and N. Mantri. 2016. Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Scientific Reports, 6: 19228. [DOI:10.1038/srep19228]
15. Golldack, D., I. Lüking and O. Yang. 2011. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports, 30: 1383-1391. [DOI:10.1007/s00299-011-1068-0]
16. Hayat, S., Q. Hayat, M.N. Alyemeni, A.S. Wani, J. Pichtel and A. Ahmad. 2012. Role of proline under changing environments: a review. Plant Signaling & Behavior, 7: 1456-1466. [DOI:10.4161/psb.21949]
17. Heidari, P. and H. Najafi Zarrini. 2016. Classification and gene expression analysis of bzip family in tomato root under sub-optimal temperature. Journal of Crop Breeding, 8(17): 17-23 (In Persian). [DOI:10.18869/acadpub.jcb.8.17.23]
18. Hiremath, P.J., A. Farmer, S.B. Cannon, J. Woodward, H. Kudapa and R. Tuteja. 2011. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnology Journal, 9: 922-931. [DOI:10.1111/j.1467-7652.2011.00625.x]
19. Huang, G.T., S.L. Ma, L.P. Bai, L. Zhang, H. Ma and P. Jia. 2012. Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 39: 969-987. [DOI:10.1007/s11033-011-0823-1]
20. Jaganathan, D., M. Thudi, S. Kale, S. Azam, M. Roorkiwal and P.M. Gaur. 2015. Genotyping-by-sequencing based intra-specific genetic map refines a ''QTL-hotspot" region for drought tolerance in chickpea. Molecular Genetics and Genomics, 290: 559-571. [DOI:10.1007/s00438-014-0932-3]
21. Jin, J., H. Zhang, L. Kong, G. GAO and J. Luo. 2013. Plant TFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research, 42: 1182-D1187. [DOI:10.1093/nar/gkt1016]
22. Jukanti, A.K., P.M. Gaur, C. Gowda and R.N. Chibbar. 2012. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108: S11-S26. [DOI:10.1017/S0007114512000797]
23. Kale, S.M., D. Jaganathan, P. Ruperao, C. Chen, R. Punna and H. Kudapa. 2015. Prioritization of candidate genes in "QTL-hotspot" region for drought tolerance in chickpea (Cicer arietinum L.). Scientific Reports, 5: 15296. [DOI:10.1038/srep15296]
24. Kashiwagi, J., L. Krishnamurthy, J.H. Crouch and R. Serraj. 2006. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Research, 95: 171-181. [DOI:10.1016/j.fcr.2005.02.012]
25. Liu, J.H., T. Peng and W. Dai. 2014. Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants. Plant Molecular Biology Reporter, 32: 303-317. [DOI:10.1007/s11105-013-0667-z]
26. Liu, L., Z. Zhang, J. Dong and T. Wang. 2016. Overexpression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula. Environmental and Experimental Botany, 123: 50-58. [DOI:10.1016/j.envexpbot.2015.10.007]
27. Liu, Y., X. Yu, S. Liu, H. Peng, A. Mijiti and Z. Wang. 2017. A chickpea NAC-type transcription factor, CarNAC6, confers enhanced dehydration tolerance in Arabidopsis. Plant Molecular Biology Reporter, 35: 83-96. [DOI:10.1007/s11105-016-1004-0]
28. Lobell, D.B., W. Schlenker and J. Costa-Roberts. 2011. Climate trends and global crop production since 1980. Science, 333: 616-620. [DOI:10.1126/science.1204531]
29. Mansourifar, C., M. Shaban, M. Ghobadi and A.R. Ajirlu. 2011. Effect of drought stress and N fertilizer on yield, yield components and grain storage proteins in chickpea (Cicer arietinum L.) cultivars. African Journal of Plant Science, 5: 634-642.
30. Moucheshi, S., B. Heidari and E. Farshadfar. 2009. Evaluation of stress indices for drought tolerance screening of chickpea (Cicer arietinum L.). Journal of Crop Breeding, 1 (4): 49-64 (In Persian).
31. Nakashima, K., H. Takasaki, J. Mizoi, K. Shinozaki and K. Yamaguchi-Shinozaki. 2012. NAC transcription factors in plant abiotic stress responses. Biochimica ET Biophysica Acta, 1819: 97-103. [DOI:10.1016/j.bbagrm.2011.10.005]
32. Nakashima, K., L.S.P. Tran, D. Van Nguyen, M. Fujita, K. Maruyama and D. Todaka. 2007. Functional analysis of a NAC‐type transcription factor OsNAC6 involved in abiotic and biotic stress‐responsive gene expression in rice. The Plant Journal, 51: 617-630. [DOI:10.1111/j.1365-313X.2007.03168.x]
33. Nguyen, K.H., C.V. Ha, Y. Watanabe, U.T. Tran, M. Nasr Esfahani and D.V. Nguyen. 2015. Correlation between differential drought tolerability of two contrasting drought-responsive chickpea cultivars and differential expression of a subset of CaNAC genes under normal and dehydration conditions. Frontiers in Plant Science, 6: 449. [DOI:10.3389/fpls.2015.00449]
34. Ngwe, T., Y. Nukui, S. Oyaizu, G. Takamoto, S. Koike, K. Ueda. 2012. Bean husks as a supplemental fiber for ruminants: potential use for activation of fibrolytic rumen bacteria to improve main forage digestion. Animal Science Journal, 83: 43-49. [DOI:10.1111/j.1740-0929.2011.00916.x]
35. Pérez-Clemente, R.M., V. Vives, S.I. Zandalinas, M.F. López-Climent, V. Muñoz and A. Gómez-Cadenas. 2012. Biotechnological approaches to study plant responses to stress. BioMed Research International, 13-20.
36. Rubio, L.A. 2005. Ileal digestibility of defatted soybean, lupin and chickpea seed meals in cannulated Iberian pigs: I. Proteins. Journal of the Science of Food and Agriculture, 85: 1313-1321. [DOI:10.1002/jsfa.1963]
37. Sah, S.K., K.R. Reddy and J. Li. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7: 571. [DOI:10.3389/fpls.2016.00571]
38. Schaller, G.E., J.J. Kieber and S.H. Shiu. 2008. Two-component signaling elements and histidyl-aspartyl phosphorelays. The Arabidopsis Book, 112 pp. [DOI:10.1199/tab.0112]
39. Shao, H.B., L.Y. Chu, C.A. Jaleel, P. Manivannan, R. Panneerselvam and M.A. Shao. 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the globe. Critical Reviews in Biotechnology, 29: 131-151. [DOI:10.1080/07388550902869792]
40. Singh, D. and A. Laxmi. 2015. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science, 6 pp. [DOI:10.3389/fpls.2015.00895]
41. Singh, K.B., R.C. Foley and L. Oñate-Sánchez. 2002. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 5: 430-436. [DOI:10.1016/S1369-5266(02)00289-3]
42. Singh, R.P., S. Rizvi and P.K. Jaiwal. 2003. Genetic engineering for enhancing abiotic stress tolerance. Improvement Strategies of Leguminosae Biotechnology. Springer, 223-243. [DOI:10.1007/978-94-017-0109-9_10]
43. Su, L.T., J.W. Li, D.Q. Liu, Y. Zhai, H.J. Zhang and X.W. Li. 2014. A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene, 538: 46-55. [DOI:10.1016/j.gene.2014.01.024]
44. Thudi, M., H.D. Upadhyaya, A. Rathore, P.M. Gaur, L. Krishnamurthy and M. Roorkiwal. 2014. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One, 9: 96758. [DOI:10.1371/journal.pone.0096758]
45. Varshney, R.K., C. Song, R.K. Saxena, S. Azam, S. Yu and A.G. Sharpe. 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31: 240-246. [DOI:10.1038/nbt.2491]
46. Varshney, R.K., M. Thudi, S.N. Nayak, P.M. Gaur, J. Kashiwagi and L. Krishnamurthy. 2014. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). TAG. Theoretical and Applied Genetics, 127: 445-462. [DOI:10.1007/s00122-013-2230-6]
47. Wilkinson, S. and W.J. Davies. 2010. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell & Environment, 33: 510-525. [DOI:10.1111/j.1365-3040.2009.02052.x]
48. Yu, X., Y. Liu, S. Wang, Y. Tao, Z. Wang and Y. Shu. 2016. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Reports, 35: 613-627. [DOI:10.1007/s00299-015-1907-5]
49. United Nations. 2015. The World Population Prospects. New York, NY: United Nations Department of Economic and Social Affairs.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2019 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb