دوره 8، شماره 18 - ( تابستان 1395 )                   جلد 8 شماره 18 صفحات 211-204 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

(2016). Evaluation of Phylogenetic Relationships for Waxy Genes in Wild and Cultivated Wheat using Multiplex-PCR. jcb. 8(18), 204-211. doi:10.29252/jcb.8.18.204
URL: http://jcb.sanru.ac.ir/article-1-657-fa.html
مریمی زهرا، فاضلی آرش، اشرف مهرابی علی. بررسی روابط فیلوژنتیکی ژن‌های واکسی در گندم‌های وحشی و زراعی با استفاده از PCR چندگانه پژوهشنامه اصلاح گیاهان زراعی 1395; 8 (18) :211-204 10.29252/jcb.8.18.204

URL: http://jcb.sanru.ac.ir/article-1-657-fa.html


چکیده:   (3248 مشاهده)

پروتئین‌های واکسی مسئول سنتز آمیلوز در دانه‌های گندم می‌باشند که در گندم‌های هگزاپلوئید به وسیله  سه ژن واکسی Wx- A1 Wx-B1, و Wx-D1 رمزگذاری می­شوند که نقش مهمی در کیفیت آرد گندم دارند. هدف این مطالعه بررسی روابط فیلوژنتیکی ژن‌های واکسی در گندم‌های وحشی و زراعی با استفاده از PCR چندگانه می‌باشد. برای این منظور 71 جمعیت از 8 گونه جنس آژیلوپس و 4 گونه گندم وحشی با استفاده ازتکنیک PCR چندگانه مورد مطالعه قرار گرفتند. نتایج حاصل از خوشه‌بندی نشان داد که نمونه‌ها به دوگروه اصلی تقسیم شدند. نمونه‌های دیپلوئید با ژنوم (A, B, D) در یک گروه و گندم‌های تتراپلوئید و هگزاپلوئید در گروه دیگر قرار گرفتند. همچنین، نتایج بای پلات نشان داد که ژنوم‌هایA  و D بیشترین قرابت ژنتیکی از لحاظ ژن‌های واکسی را با هم داشتند. تکنیک PCR چندگانه به شناسایی هم­زمان هر سه ژن واکسی در جمعیت‌های مختلف گندم قادر بوده و باعث صرفه‌جویی در زمان و هزینه می‌شود. هم چنین از نتایج آن می‌توان در برنامه‌های اصلاحی انتخاب به کمک مارکر استفاده نمود.

متن کامل [PDF 371 kb]   (1368 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1395/8/18 | پذیرش: 1395/8/18 | انتشار: 1395/8/18

فهرست منابع
1. Ainsworth, C., J. Clark and J. Balsdon. 1993. Expression, organization and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat. Plant Molecular Biology, 22: 67-82. [DOI:10.1007/BF00038996]
2. Caballero, L., E. Bancel, C. Debiton and G. Branlard. 2008. Granulebound starch synthase (GBSS) diversity of ancient wheat and related species. Plant Breeding, 127: 548-553. [DOI:10.1111/j.1439-0523.2008.01512.x]
3. Chao, S., P.J. Sharp, A.J. Worland, E.J. Warham, R.M.D. Koebner and M.D. Gale. 1989. RFLP-based genetic maps of wheat homologous group 7 chromosomes. Theoretical and Applied Genetics, 78: 495-504. [DOI:10.1007/BF00290833]
4. Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15.
5. Dvorˇa’k, J., M.C. Luo and Z.L. Yang. 1998b. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics, 148: 423-434.
6. Dvorˇa’k, J. and H.B. Zhang. 1992. Reconstruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences. Theoretical and Applied Genetics, 84: 419-429.
7. Feldman, M. 2001.The origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book. A history of wheat breeding. Lavoisier Tech and Doc, Paris, pp: 3-56.
8. Fortune, P.M., K.A. Schierenbeck, A.K. Ainouche, J. Jacquemin, J.F. Wendel and M.L. Ainouche.2007. Evolutionary dynamics of waxy and the origin of hexaploid Spartina species (Poaceae). Molecular and Phylogenetic Evolution, 43: 1040-1055. [DOI:10.1016/j.ympev.2006.11.018]
9. Graybosch, R.A., K.J. Schemmerhorn and J.H. Skerritt. 1999. An Enzyme-Linked Immunosorbent Assay for the Identification of Wheat Carrying Null Alleles at Genetic Loci Encoding the Granule-Bound Starch Synthas. Cereal Science, 30: 159-163. [DOI:10.1006/jcrs.1999.0273]
10. Guzma’n, C., L. Caballero and J.B. Alvarez. 2009. Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum) as determined by morphological traits and waxy proteins. Genetics Resources and Crop Evolution, 56: 601-604. [DOI:10.1007/s10722-009-9424-4]
11. Guzma’n, C. and J.B. Alvarez. 2012. Molecular characterization of a novel waxy allele (Wx-Au1a) from Triticum urartu Thum. exGandil. Genetics Resources and Crop Evolution, 59: 971-979. [DOI:10.1007/s10722-012-9849-z]
12. Guzma’n, C., L. Caballero, M. Yamamori and J.B. Alvarez. 2012b. Molecular characterization of a new waxy allele with partial expression in spelt wheat. Planta, 235: 1331-1339. [DOI:10.1007/s00425-011-1577-7]
13. Ingram, A.L. and J.J. Doyle. 2003. The origin and evolution of Eragrostistef (Poaceae) and related polyploids: evidence from nuclear waxy and plastid rps16. American Journal of Botany, 90: 116-122. [DOI:10.3732/ajb.90.1.116]
14. James, M.G., K. Denyer and A.M. Myers. 2003. Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 6: 215-222. [DOI:10.1016/S1369-5266(03)00042-6]
15. Johnson, B. 1975. Identification of the apparent B-genome donor of wheat. Canadian Journal of Genetics and Cytology, 17: 21-39. [DOI:10.1139/g75-004]
16. Kiribuchi-Otobe, C., T. Nagamine, T. Yanagisawa, M. Phnishi and I .Yamaguchi. 1997. Production of hexaploid wheats with waxy endosperm character. Cereal Chemistry journal, 74: 72-74.
17. Li, W., Z. Gao, W. Xiao, Y.M. Wei, Y.X. Liu. G.Y. Chen, Z.E. Pu, H.P. Chen and Y.L. Zheng. 2012. Molecular diversity of restriction enzyme sites, Indels and upstream open reading frames (uORFs) of 50 untransalted regions (UTRs) of Waxy genes in Triticum L. and Aegilops L. species. Genetics Resources and Crop Evolution, 59: 1625-1647. [DOI:10.1007/s10722-011-9787-1]
18. Long-Dou, L., H. Cai-Ling, C. Long, Y. Gui-Hong, D. Chuan-Liang, G. Wu-Jun1, Y. Xu-Qin and T. Guang-Xuan. 2009. Molecular identification on Waxy genes in wheat using multiple-PCR. Hereditas (Beijing), 31: 844-848.
19. Maryami, Z., A. Fazeli and A.A. Mehrabi. 2014a. Identification of Variation for Wx- D Genome in Wheat and Its Ancestor. Advances in Environmental Biology, 8: 2012-2016.
20. Maryami, Z., A. Fazeli and A.A. Mehrabi. 2014b. Investigation of diversity of Waxy- A1 gene using amplification in different spices in A genome wheat's. Advances in Environmental Biology, 8: 2004-2007.
21. Mason-Gamer, RJ., C.F. Weil and E.A. Kellogg. 1998. Granule-bound starch synthase: structure, function, and phylogenetic utility. Molecular biology and evolution, 15: 1658-1673. [DOI:10.1093/oxfordjournals.molbev.a025893]
22. Mason-Gamer, R.J. 2001. Origin of North American Elymus (Poaceae: Triticeae) allotetra ploids based on granule bound starch synthase gene sequences. Systematic Botany, 26: 757-768.
23. Miller, T.E. 1987. Systematic and evolution. In: Lupton FGH (ed) Wheat breeding: its scientific basis. Chapman and Hall, London, pp: 1-30. [DOI:10.1007/978-94-009-3131-2_1]
24. Nakamura, T., P. Vrinten, M. Saito and M. Konda. 2002. Rapid classification of partial waxy wheats using PCR-based markers. Genome, pp: 1150-1156. [DOI:10.1139/g02-090]
25. Nakamura, T., M. Yamamori, H. Hirano and S. Hidaka. 1995. Production of waxy (amylose-free) wheats. Molecular and General Genetics, 248: 253-259. [DOI:10.1007/BF02191591]
26. Ortega, R., J.B. Alvarez and C. Guzman. 2013. Characterization of the Wx- gene in diploid Aegilops species and its potential use in wheat breeding. Genetics Resources and Crop Evolution, pp: 369-382.
27. Petersen, G., S. Ole, Y. Merete and B. Kasper. 2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B and D genomes of common wheat (Triticum aestivum). Molecular Phylogenetics and Evolution, 39: 70-82. [DOI:10.1016/j.ympev.2006.01.023]
28. Saito, M., P. Vrinten and T. Nakamura. 2010. DNA Markers for Identifying Waxy Mutations and Improving Noodle Quality in Wheat. Japan International Research Center for Agriculture Science, 44:109-115. [DOI:10.6090/jarq.44.109]
29. Shariflou, M.R. and P.J. Sharp. 1999. A polymorphic microsatellite in the 3' end of 'waxy' genes of wheat, Triticum aestivm. Plant Breeding, 118: 275-277. [DOI:10.1046/j.1439-0523.1999.118003275.x]
30. Shariflou, M.R., M.E. Hassani, G. Good and P.J. Sharp. 2003. Tightly linked DNA markers for the waxy loci in bread wheat. Tenth International Wheat Genetics Symposium, 2: 831-834.
31. Van Slageren, M.W. 1994. Wild wheats: a monograph of Aegilops L and Amblyopyrum (Jaub and Spach) Eig.(poaceae), Agricultural University Wageningen: the Netherland.ICARDA: Aleppo, Syria, pp: 7-512.
32. Tsunewaki, K. and Y. Ogihara. 1983. The Molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. 11. On the origin of polyploidy wheat cytoplasm's as suggested by chloroplast DNA restriction fragment patterns. Genetics, 104: 155-171.
33. Vanzetti, L.S., L.A. Pfluger, M. Rodriguez-Quijano, J.M. Carrillo and M. Helguera. 2009. Genetic variability for waxy genes in Argentinean bread wheat germplasm. Electronic Journal of Biotechnology, 12: 1-9. [DOI:10.2225/vol12-issue1-fulltext-2]
34. Wang, S., X. Li, K. Wang, X. Wang, S. Li, Y. Zhang, G. Guo, F.J. Zeller, S.L.K. Hsam, Y. Yan and P. Gustafson. 2011. Phylogenetic analysis of C, M, N, and U genomes and their relationships with Triticum and other related genomes as revealed by LMW-GS genes at Glu-3 loci. Genome, 54: 273-284. [DOI:10.1139/g10-119]
35. Yamamori, M., T. Nakamura, T.R. Endo and T. Nagamine. 1994. Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theoretical and Applied Genetics, 89: 179-184. [DOI:10.1007/BF00225138]
36. Yamamori, M. 2009. Amylose content and starch properties generated by five variant Wx alleles for granule-bound starch synthase in common wheat (Triticum aestivum L.). Euphytica, 165: 607-614. [DOI:10.1007/s10681-008-9793-3]
37. Yamamori, M. and K. Yamamoto. 2011. Effects of two novel Wx-A1 alleles of common wheat (Triticum aestivum L.) on amyloseand starch properties. Journal of Cereal Science, 54: 229-235. [DOI:10.1016/j.jcs.2011.06.005]
38. Yamamori, M., T. Nakamura and T. Nagamine. 1995. Poly morphism of two waxy proteins in the emmer group of tetraploid wheat, Triticum dicoccoides, T. dicoccum, and T. durum. Plant Breeding, 114: 215-218. [DOI:10.1111/j.1439-0523.1995.tb00796.x]
39. Yamamori, M., T. Nakamura, T.R. Endo and T. Nagamine. 1994. Waxy protein deficiency and chromosomal location of coding genes in common wheat .Theoretical and Applied Genetics, 89: 179-184. [DOI:10.1007/BF00225138]
40. Yan, L., M. Bhave, R. Fairclough, C. Konik, S. Rahman and R. Appels. 2000. The genes encoding granule-bound starch synthases at the waxy loci of the A, B and D progenitors of common wheat. Genome, 43: 264-272. [DOI:10.1139/g99-117]
41. Yan, L. and M. Bhave. 2001. Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. zhukovskyi and implications for evolution of wheat. Genome, 44: 582-588. [DOI:10.1139/g01-036]
42. Zeng, M., C.F. Morris, I.L. Batey and C.W. Wrigley. 1997. Sources of variation for starch gelatinization, pasting and gelation properties in wheat. Cereal Chemical, 74: 63-71. [DOI:10.1094/CCHEM.1997.74.1.63]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb