دوره 8، شماره 18 - ( تابستان 1395 )                   جلد 8 شماره 18 صفحات 203-191 | برگشت به فهرست نسخه ها

XML English Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

(2016). Drought Stress Effect on Physiological Parameter and Amino Acids Accumulations in Canola. jcb. 8(18), 191-203. doi:10.29252/jcb.8.18.191
URL: http://jcb.sanru.ac.ir/article-1-656-fa.html
زالی حسن، حسنلو طاهره، سفالیان امید، اصغری علی، زین العابدینی مهرشاد. اثر تنش خشکی بر پارامترهای فیزیولوژیکی و تجمع اسید‏های آمینه در کلزا پژوهشنامه اصلاح گیاهان زراعی 1395; 8 (18) :203-191 10.29252/jcb.8.18.191

URL: http://jcb.sanru.ac.ir/article-1-656-fa.html

چکیده:   (5124 مشاهده)

     این تحقیق، به منظور بررسی اثر تنش خشکی بر پارامترهای فیزیولوژیکی و تجمع اسید‏های آمینه در دو رقم کلزا (SLM046 و Cooper به ترتیب متحمل و حساس به خشکی) و در دو مرحله از فاز رویشی (مرحله ساقه‏رفتن و گل‏دهی) انجام شد. سطوح آبیاری شامل 80 میلی‏متر تبخیر از تشتک تبخیر (شاهد) و قطع آبیاری در مرحله ساقه‏رفتن و گل‏دهی بود. نتایج نشان داد که در شرایط تنش آبی، عملکرد دانه، هدایت روزنه‏ای، کلروفیل a و b، محتوای کاروتنوئید و پروتئین محلول، در برگ هر دو رقم، به طور معنی‏داری کاهش یافته است. فعالیت آنزیم‏های آنتی‏اکسیدان (کاتالاز، پراکسیداز و آسکوربات پراکسیداز) در شرایط تنش در مرحله ساقه‏رفتن افزایش یافته، اما فعالیت آنزیم‏های پراکسیداز و آسکوربات پراکسیداز در شرایط تنش در مرحله گل‏دهی کاهش یافته است. اسید‏های آمینه تریپتوفان، سرین، گلوتامین و آلفا-آمینو بوتریک اسید، فراوانی بالایی از محتوای کلی اسید‏های آمینه را در مرحله ساقه‏رفتن داشتند، هم چنین اسید‏های آمینه گلوتامین، ایزولوسین، سرین و هیستیدین در مرحله گل‏دهی بالاترین مقدار  از مجموع اسید‏های آمینه را به خود اختصاص دادند. افزایش محتوای بیشتر اسید‏های آمینه در پاسخ به تنش خشکی در مرحله گل‏دهی مشاهده شد. تجمع معنی‏دار اسید‏های آمینه آسپاراتیک اسید، آسپاراژین، گلوتامین، لیزین، سیستئین، تریپتوفان و فنیل‏آلانین تحت شرایط تنش در مرحله ساقه‏رفتن و تجمع اسید‏های آمینه گلوتامین، گلایسین، تیروزین، متیونین، فنیل‏آلانین و ایزولوسین تحت تنش در مرحله گل‏دهی در ژنوتیپ متحمل SLM046 می‏باشد، در حالی‏که هیچ تجمع معنی‏داری از اسید‏های آمینه در ژنوتیپ حساس Cooper تحت تنش مشاهده نشد. بنابراین می‏توان نتیجه گرفت که تجمع اسید‏های آمینه آزاد ارتباط نزدیکی با تحمل به خشکی ژنوتیپ‏های متحمل دارند.

متن کامل [PDF 1001 kb]   (5114 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1395/8/18 | ویرایش نهایی: 1395/9/6 | پذیرش: 1395/8/18 | انتشار: 1395/8/18

فهرست منابع
1. Aebi, H.E. 1983. Catalase. In: Methods of enzymatic analysis. 3rd ed. Vol.3 eds. By Bergmeyer H.U., Bergmeyer J., Grabi M. 273-282, VCH Verlagsgesellschaft mbH, Germany.
2. Ahmed, I.M., F. Cao, Y. Han, U.A. Nadira, G. Zhang and F. Wu. 2013. Differential changes in grain ultra structure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chemistry, 141: 2743-2750. [DOI:10.1016/j.foodchem.2013.05.101]
3. Anjum, S.A., M. Farooq, X. Xie, X. Liu and M.F. Ijaz. 2012. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Scientia Horticulturae, 140: 66-73. [DOI:10.1016/j.scienta.2012.03.028]
4. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1-15. [DOI:10.1104/pp.24.1.1]
5. Asada, K. 1999. The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Molecular Biology, 50: 601-639. [DOI:10.1146/annurev.arplant.50.1.601]
6. Barnett, N.M., and A.W. Naylor. 1966. Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiology, 41: 1222-1230. [DOI:10.1104/pp.41.7.1222]
7. Bates, LS., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. [DOI:10.1007/BF00018060]
8. Blum, A. and A. Ebercon. 1976. Genotypic responses in sorghum to drought stress. III. Free proline accumulation and drought resistance. Crop Science, 16: 428-431. [DOI:10.2135/cropsci1976.0011183X001600030030x]
9. Bohnert, H.J., D.E. Nelson and R.G. Jensen. 1995. Adaptations to environmental stresses. The Plant Cell, 7:1099-1111. [DOI:10.1105/tpc.7.7.1099]
10. Breusegem, F.V., E. Vranova, J.F. Dat and D. Inze. 2001. The role of active oxygen species in plant signal transduction. Plant Science, 161: 405-414. [DOI:10.1016/S0168-9452(01)00452-6]
11. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72: 248-254. [DOI:10.1016/0003-2697(76)90527-3]
12. Chance, B. and A.C. Maehly. 1955. Assay of catalase and peroxidase. Methods in enzymology, 2: 764-775. [DOI:10.1016/S0076-6879(55)02300-8]
13. Crawford, L.A., A.W. Bown, K.E. Breitkreuz and F.C. Cuine. 1994. The Synthesis of y-Aminobutyric Acid in Response to Treatments Reducing Cytosolic pH. Plant Physiology, 104: 865-871. [DOI:10.1104/pp.104.3.865]
14. Davies, W. J., and Zhang, J. 1991. Root signals and the regulation of growth and development of plant in drying soil. Ann. Rev. Plant Physiol. Plant Molecular Biology, 42: 55-76. [DOI:10.1146/annurev.pp.42.060191.000415]
15. De Campos, M.K.F., K. De Carvalho, F.S. De Souza, C.J. Marur, L.F.P. Pereira, J.C.B. Filho and L.G.E. Vieira. 2011. Drought tolerance and antioxidant enzymatic activity in transgenic 'Swingle' citrumelo plants over-accumulating proline. Environmental and Experimental Botany, 72: 242-250. [DOI:10.1016/j.envexpbot.2011.03.009]
16. Delauney, A.J. and D.P. Verma. 1993. Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4: 215-223. [DOI:10.1046/j.1365-313X.1993.04020215.x]
17. De ronde J.A., M.H. Spreeth and W.A. Cress. 2000. Effect of antisense L-Δ1-pyrroline -5-carboxylate reductase transgenic soyabean plants subjected to osmotic and drought stress. Plant Growth Regulation, 32: 13-26.
18. Drossopoulos, J.B., A.J. Karamanos and C.A. Niavis. 1985. Changes in free amino compounds during the development of two wheat cultivars subjected to different degrees of water stress. Annals of Botany, 54: 291-305. [DOI:10.1093/oxfordjournals.aob.a087015]
19. Galston, A.W. and R.K. Sawhney. 1990. Polyamines in plant physiology. Plant Physiology, 94: 406-410. [DOI:10.1104/pp.94.2.406]
20. Ghobadi, M., S. Taherabadia, M.E. Ghobadi, Gh.R. Mohammadi and S. Jalali-Honarmand. 2013. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Industrial Crops and Products, 50: 29-38. [DOI:10.1016/j.indcrop.2013.07.009]
21. Good, A.G. and S.T. Zaplachinski. 1994. The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiology Plant, 90: 9-14. [DOI:10.1111/j.1399-3054.1994.tb02185.x]
22. Graan, T. and J.S. Boyer. 1990. Very high CO2 partially restores photosynthesis in sunflower at low leaf water potentials. Planta, 181: 378-384. [DOI:10.1007/BF00195891]
23. Huseynova, I.M. 2012. Photosynthetic characteristics and enzymatic antioxidantcapacity of leaves from wheat cultivars exposed to drought. Biochimica et Biophysica Acta: Bioenergetics, 1817: 1516-1523. [DOI:10.1016/j.bbabio.2012.02.037]
24. Jiang, Y. and B. Huang. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation contribution No. 00-227-J from Kansas. Agric. Exp. Stn. Crop Science, 41: 436-442.
25. Karamanos, A.J. 1995. The involvement of proline and some metabolites in water stress and their importance as drought resistance indicators. Bulgarian Journal of Plant Physiology, 21: 98-110.
26. Ketchum, R.E.B., R.C. Warren, L.J. Klima, F. Lopez-Gutierrez and M.W. Nabors. 1991. The mechanism and regulation of proline accumulation in suspension cultures of the halophytic grass Distichlis spicata L. Journal Plant Physiology, 137: 368-374. [DOI:10.1016/S0176-1617(11)80147-1]
27. Lal, A. and G.E. Edwards. 1996. Analysis of inhibition of photosynthesis under water stress in the C4 species Amaranthus cruentus and Zea mays: electron transport, CO2 fixation and carboxylation capacity. Australian Journal Plant Physiology, 23: 403-412. [DOI:10.1071/PP9960403]
28. Liang, J.S., J. Zhang and M.H. Wong. 1997. Can stomata closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying?, Photosynthesis Research, 51: 149-159. [DOI:10.1023/A:1005797410190]
29. Lauer, M.J. and J.S. Boyer. 1992. Internal CO2 measured directly in leaves. Abscisic acid and low leaf water potential cause opposing effects. Plant Physiology, 98: 1310-1316. [DOI:10.1104/pp.98.4.1310]
30. Liu, C., Y. Liu, K. Guo, D. Fan, G. Li, Y. Zheng, L. Yu and R. Yang. 2011. Effect of droughton pigments, osmotic adjustment and antioxidant enzymes in six woody plantspecies in karst habitats of southwestern, China. Environ. Experimental Botany, 71: 174-183. [DOI:10.1016/j.envexpbot.2010.11.012]
31. Manivannan, P., C.A. Jaleel, R. Somasundaram and R. Panneerselvam. 2008. Osmoregu-lation and antioxidant metabolism in drought-stressed Helianthus annuus undertriadimefon drenching. Comptes Rendus Biologies, 331: 418-425. [DOI:10.1016/j.crvi.2008.03.003]
32. Marur C.J., L. Sodek and A.C. Magalhaes .1994. Free amino acids in leaves of cotton plants under water deficit. Rev Bras Fisiologia Vegetal, 6: 103-108.
33. Mirzaee M., A. Moieni and F. Ghanati. 2013. Effect of drought stress on proline and soluble sugar content in canola (Brassica napus L.) seedlings. Iranian Journal of Biology, 26: 90-98 (In Persian).
34. Nakano, Y. and K. Asada. 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology, 28: 131-140.
35. Qifuma, S.h., R. Niknam and D.W. Turner. 2006. Resposes of osmotic adjustment and seed yield of Brassica napus and B. juncea to soil water deficit at different growth stages. Australian Journal of Agricultural Research, 57: 221-226. [DOI:10.1071/AR04283]
36. Rampino.P., S. Pataleo, C. Gerardi, J, Mita and C. Perrotta. 2006. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell and Environment, 29: 2143-2152. [DOI:10.1111/j.1365-3040.2006.01588.x]
37. Reddy, A. R., K.V. Chaitany and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants Journal Plant Physiology, 161: 1189-1202. [DOI:10.1016/j.jplph.2004.01.013]
38. Rhoades, J.D., F. Chanduvi and S.M. Lesch. 1999. Soil salinity assessment methods and interpretation of electrical conductivity measurements. Rome, Italy: Food & Agriculture Organization of the UN (FAO).
39. Saeeidpour, S. and F. Moradi. 2012. Stress-induced changes in the free amino acid composition of two wheat cultivars with difference in drought resistance. African Journal of Biotechnology, 11: 9559-9565. [DOI:10.5897/AJB11.3870]
40. Sanchez, A., Z.Y. Yang, L. Xu, G.J. Nabel, T. Crews and C.J. Peters. 1998. Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. Journal of Virology, 72: 6442-6447.
41. Showler, A.T., C.O. Cavazos and P.J. Moran. 2007. Dynamics of free amino acid accumulations in cotton leaves measured on different timelines after irrigation. Subtropical Plant Science, 59: 38-55.
42. Showler, A. T. and B.A. Castro. 2010. Influence of drought stress on Mexican rice borer (Lepidoptera: Crambidae) oviposition preference in sugarcane. Crop Protection, 28: 722-727. [DOI:10.1016/j.cropro.2009.07.014]
43. Singh, T.N., L.G. Paleg and D. Aspinall. 1973. Stress metabolism. I. nitrogen Metabolism and growth in the barley plant during stress. Australian Journal of Biological Sciences, 26: 45-56.
44. Valladares, F. and R.W. Pearcy. 1997. Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the Sclerophyll heteromeles arbutifolia. Plant Cell Environment, 20: 25-36. [DOI:10.1046/j.1365-3040.1997.d01-8.x]
45. Willekens, H., S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels, M. Van Montagu, D. Inzé and W. Van Camp. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal, 16: 4806-4816. [DOI:10.1093/emboj/16.16.4806]
46. Yang, J., J. Zhang, Z. Huang, Z. Wang, Q. Zhu and L. Liu. 2002. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Animals of Bot. 90: 369-377. [DOI:10.1093/aob/mcf198]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb