1. Abdel-Ghany, S. E., Ullah, F., Ben-Hur, A., & Reddy, A. S. (2020). Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress. International Journal of Molecular Sciences, 21(3), 772. [
DOI:10.3390/ijms21030772]
2. Abdelwahab, O., Awad, N., Elserafy, M., & Badr, E. (2022). A feature selection-based framework to identify biomarkers for cancer diagnosis: A focus on lung adenocarcinoma. Plos One, 17(9), e0269126. [
DOI:10.1371/journal.pone.0269126]
3. Azodi, C. B., Lloyd, J. P., & Shiu, S.-H. (2020). The cis-regulatory codes of response to combined heat and drought stress in Arabidopsis thaliana. NAR Genomics and Bioinformatics, 2(3), lqaa049. [
DOI:10.1093/nargab/lqaa049]
4. Bonnot, T., Somayanda, I., Jagadish, S. K., & Nagel, D. H. (2023). Time of day and genotype sensitivity adjust molecular responses to temperature stress in sorghum. The Plant Journal, 116(4), 1081-1096. [
DOI:10.1111/tpj.16467]
5. Bordbar, M., Darvishzadeh, R., & Pazhouhandeh, M. (2023). Molecular Techniques for Plants Gene Expression Analysis at the Transcriptomics Level [Research]. Journal of Crop Breeding, 15(45), 83-104.
https://doi.org/10.61186/jcb.15.45.83 [
DOI:10.61186/jcb.15.45.83 [In Persian]]
6. Chong, J., Baltz, R., Schmitt, C., Beffa, R., Fritig, B., & Saindrenan, P. (2002). Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. The Plant Cell, 14(5), 1093-1107. [
DOI:10.1105/tpc.010436]
7. Colombelli, F., Kowalski, T. W., & Recamonde-Mendoza, M. (2022). A hybrid ensemble feature selection design for candidate biomarkers discovery from transcriptome profiles. Knowledge-Based Systems, 254, 109655. [
DOI:10.1016/j.knosys.2022.109655]
8. Frey, F. P., Urbany, C., Hüttel, B., Reinhardt, R., & Stich, B. (2015). Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress. BMC Genomics, 16, 1-15. [
DOI:10.1186/s12864-015-1282-1]
9. Fu, H., Zhao, J., Ren, Z., Yang, K., Wang, C., Zhang, X., Chen, C. (2022). Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. Plant Physiology, 188(2), 1210-1228. [
DOI:10.1093/plphys/kiab563]
10. Gachon, C., Baltz, R., & Saindrenan, P. (2004). Over-expression of a scopoletin glucosyltransferase in Nicotiana tabacum leads to precocious lesion formation during the hypersensitive response to tobacco mosaic virus but does not affect virus resistance. Plant Molecular Biology, 54, 137-146. [
DOI:10.1023/B:PLAN.0000028775.58537.fe]
11. Gibson, G., & Weir, B. (2005). The quantitative genetics of transcription. TRENDS in Genetics, 21(11), 616-623. [
DOI:10.1016/j.tig.2005.08.010]
12. Haury, A.-C., Gestraud, P., & Vert, J.-P. (2011). The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. Plos One, 6(12), e28210. [
DOI:10.1371/journal.pone.0028210]
13. James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). Statistical learning. In An introduction to statistical learning: With applications in Python (pp. 15-67). Springer. [
DOI:10.1007/978-3-031-38747-0_2]
14. Kononenko, I. (1994, April). Estimating attributes: Analysis and extensions of RELIEF. In European conference on machine learning (pp. 171-182). Berlin, Heidelberg: Springer Berlin Heidelberg. [
DOI:10.1007/3-540-57868-4_57]
15. Kononenko, I., & Kukar, M. (2007). Chapter 6 - Measures for Evaluating the Quality of Attributes. In I. Kononenko & M. Kukar (Eds.), Machine Learning and Data Mining (pp. 153-180). Woodhead Publishing.
https://doi.org/10.1533/9780857099440.153 [
DOI:https://doi.org/10.1533/9780857099440.153]
16. Lambin, J., Demirel Asci, S., Dubiel, M., Tsaneva, M., Verbeke, I., Wytynck, P., . . . & Van Damme, E. J. (2020). OsEUL lectin gene expression in rice: stress regulation, subcellular localization and tissue specificity. Frontiers in Plant Science, 11, 185. [
DOI:10.3389/fpls.2020.00185]
17. Lannoo, N., & Van Damme, E. J.(2014). Lectin domains at the frontiers of plant defense. Frontiers in Plant Science, 5, 397. [
DOI:10.3389/fpls.2014.00397]
18. Liu, C., & Zhang, T. (2017). Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC Genomics, 18, 1-16. [
DOI:10.1186/s12864-017-3517-9]
19. Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454). Springer science & business media.
20. Marothia, D., Kaur, N., Jhamat, C., Sharma, I., & Pati, P. K. (2023). Plant lectins: Classical molecules with emerging roles in stress tolerance. International Journal of Biological Macromolecules, 244, 125272. [
DOI:10.1016/j.ijbiomac.2023.125272]
21. Moghimi, N., Desai, J. S., Bheemanahalli, R., Impa, S. M., Vennapusa, A. R., Sebela, D., . . . & Jagadish, S. K. (2019). New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum. Journal of Experimental Botany, 70(12), 3357-3371. [
DOI:10.1093/jxb/erz143]
22. Moore, B. M., Lee, Y. S., Wang, P., Azodi, C., Grotewold, E., & Shiu, S.-H. (2022). Modeling temporal and hormonal regulation of plant transcriptional response to wounding. The Plant Cell, 34(2), 867-888. [
DOI:10.1093/plcell/koab287]
23. Nazari, L., Aslan, M. F., Sabanci, K., & Ropelewska, E. (2023). Integrated transcriptomic meta-analysis and comparative artificial intelligence models in maize under biotic stress. Scientific Reports, 13(1), 15899. [
DOI:10.1038/s41598-023-42984-4]
24. Nazari, L., Ghotbi, V., Nadimi, M., & Paliwal, J. (2023). A Novel Machine-Learning Approach to Predict Stress-Responsive Genes in Arabidopsis. Algorithms, 16(9), 407. [
DOI:10.3390/a16090407]
25. Nazari, L., Zinati, Z., & Bagnaresi, P. (2023). Identification of biomarker genes from multiple studies for abiotic stress in maize through machine learning. Journal of Biosciences, 49(1), 1. [
DOI:10.1007/s12038-023-00392-w]
26. Ning, Y., Liu, Q., Wang, C., Qin, E., Wu, Z., Wang, M., . . . Liu, H. (2021). Heat stress interferes with formation of double-strand breaks and homolog synapsis. Plant Physiology, 185(4), 1783-1797. [
DOI:10.1093/plphys/kiab012]
27. Osman, M. E. M., Osman, R. S. H., Elmubarak, S. A., Ibrahim, M. A., Abakar, H. B. M., Dirar, A. I., & Konozy, E. H. E. (2024). In silico analysis of L-and G-type lectin receptor kinases in tomato: evolution, diversity, and abiotic responses. BMC Genomics, 25(1), 1143. [
DOI:10.1186/s12864-024-11014-6]
28. Panahi, B. (2024). Transcriptome signature for multiple biotic and abiotic stress in barley (Hordeum vulgare L.) identifies using machine learning approach. Current Plant Biology, 40, 100416.
https://doi.org/10.1016/j.cpb.2024.100416 [
DOI:https://doi.org/10.1016/j.cpb.2024.100416]
29. Pardo, J., & VanBuren, R. (2021). Evolutionary innovations driving abiotic stress tolerance in C4 grasses and cereals. The Plant Cell, 33(11), 3391-3401. [
DOI:10.1093/plcell/koab205]
30. Prasad, P. V., Bheemanahalli, R., & Jagadish, S. K. (2017). Field crops and the fear of heat stress-opportunities, challenges and future directions. Field Crops Research, 200, 114-121. [
DOI:10.1016/j.fcr.2016.09.024]
31. Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L. S. P., . . . & Yamaguchi‐Shinozaki, K. (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 50(1), 54-69. [
DOI:10.1111/j.1365-313X.2007.03034.x]
32. Rai, K. K., & Rai, A. C. (2020). Recent transgenic approaches for stress tolerance in crop plants. Sustainable Agriculture in the Era of Climate Change, 533-556. [
DOI:10.1007/978-3-030-45669-6_23]
33. Rezaei Musa Dargh, S., Abdollahi Mandoulakani, B., & Ghasemzadeh, R. (2024). The Effect of Iron Deficiency Stress on the Relative Expression of ZIP3, ZIP6, and ZIP7 Genes in Bread Wheat (Triticum aestivum L.) Cultivars [Research]. Journal of Crop Breeding, 16(3), 52-63.
https://doi.org/10.61186/jcb.16.3.52 [
DOI:10.61186/jcb.16.3.52 [In Persian]]
34. Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences, 103(49), 18822-18827. [
DOI:10.1073/pnas.0605639103]
35. Shi, J., Yan, B., Lou, X., Ma, H., & Ruan, S. (2017). Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. BMC Plant Biology, 17, 1-10. [
DOI:10.1186/s12870-017-0973-y]
36. Sunoj, V. J., Somayanda, I. M., Chiluwal, A., Perumal, R., Prasad, P. V., & Jagadish, S. K. (2017). Resilience of pollen and post‐flowering response in diverse sorghum genotypes exposed to heat stress under field conditions. Crop Science, 57(3), 1658-1669. [
DOI:10.2135/cropsci2016.08.0706]
37. Tack, J., Lingenfelser, J., & Jagadish, S. K. (2017). Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proceedings of the National Academy of Sciences, 114(35), 9296-9301. [
DOI:10.1073/pnas.1706383114]
38. Tu, M., Du, C., Yu, B., Wang, G., Deng, Y., Wang, Y., ... & Li, Y. (2023). Current advances in the molecular regulation of abiotic stress tolerance in sorghum via transcriptomic, proteomic, and metabolomic approaches. Frontiers in Plant Science, 14, 1147328. [
DOI:10.3389/fpls.2023.1147328]
39. Wang, H., Lu, S., Guan, X., Jiang, Y., Wang, B., Hua, J., & Zou, B. (2022). Dehydration-responsive element binding protein 1C, 1E, and 1G promote stress tolerance to chilling, heat, drought, and salt in rice. Frontiers in Plant Science, 13, 851731. [
DOI:10.3389/fpls.2022.851731]
40. Waters, E. R. (2013). The evolution, function, structure, and expression of the plant sHSPs. Journal of Experimental Botany, 64(2), 391-403. [
DOI:10.1093/jxb/ers355]
41. Waters, E. R., & Vierling, E. (2020). Plant small heat shock proteins-evolutionary and functional diversity. New Phytologist, 227(1), 24-37. [
DOI:10.1111/nph.16536]
42. Zhang, Z., Li, W., Gao, X., Xu, M., & Guo, Y. (2020). DEAR4, a member of DREB/CBF family, positively regulates leaf senescence and response to multiple stressors in Arabidopsis thaliana. Frontiers in Plant Science, 11, 367. [
DOI:10.3389/fpls.2020.00367]
43. Zhao, J., Fu, H., Wang, Z., Zhang, M., Liang, Y., Cui, X., . . . & Zhang, Y. (2025). Genetic variation in Arabidopsis thaliana reveals the existence of natural heat resilience factors for meiosis. Plant Physiology, 197(1), kiae671. [
DOI:10.1093/plphys/kiae671]