1. Abbas, A., Shah, A. N., Shah, A. A., Nadeem, M. A., Alsaleh, A., Javed, T., Alotaibi, S. S., & Abdelsalam, N. R. (2022). Genome-wide analysis of invertase gene family, and expression profiling under abiotic stress conditions in potato. Biology, 11(4), 539. [
DOI:10.3390/biology11040539]
2. Alkio, M., & Grimm, E. (2003). Vascular connections between the receptacle and empty achenes in sunflower (Helianthus annuus L.). Journal of Experimental Botany, 54(381), 345-348. [
DOI:10.1093/jxb/erg019]
3. Alkio, M., Schubert, A., Diepenbrock, W., & Grimm, E. (2003). Effect of source-sink ratio on seed set and filling in sunflower (Helianthus annuus L.). Plant, Cell & Environment, 26(10), 1609-1619. [
DOI:10.1046/j.0016-8025.2003.01077.x]
4. Alone, R., Mate, S., Gagare, K., & Manjare, M. (2003). Heterosis in sunflower (Helianthus annus L.). Indian Journal of Agricultural Research, 37(1), 56-59.
5. Asl, Z. M. Z., Eivazi, A. R., Asilan, K. S., & Far, S. M. (2013). Investigation on sink and source realtions and seed yield and ita components in sunflower. 2nd National Conference on Climate Change and its Impact on Agriculture and the Environment, Urmia. [in Persian]
6. Behbahanzadeh, S. A., Akbari, G., Farahani, L., & Irannejad, H. (2012). Morphological and qualitative propreties of sunflower seeds in different levels of source and sink reduction. International Journal of Agriculture: Research and Review, 2(5), 618-623.
7. Bi, Y.-J., Sun, Z.-C., Zhang, J., Liu, E.-Q., Shen, H.-M., Lai, K.-L., Zhang, S., Guo, X.-T., Sheng, Y.-T., & Yu, C.-Y. (2018). Manipulating the expression of a cell wall invertase gene increases grain yield in maize. Plant Growth Regulation, 84, 37-43. [
DOI:10.1007/s10725-017-0319-7]
8. Bonfig, K. B., Gabler, A., Simon, U. K., Luschin-Ebengreuth, N., Hatz, M., Berger, S., Muhammad, N., Zeier, J., Sinha, A. K., & Roitsch, T. (2010). Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response. Molecular Plant, 3(6), 1037-1048. [
DOI:10.1093/mp/ssq053]
9. Canavar, Ö., Ellmer, F., & Chmielewski, F. (2010). Investigation of yield and yield components of sunflower (Helianthus annuus L.) cultivars in the ecological conditions of Berlin (Germany). Helia, 33(53), 117-130. [
DOI:10.2298/HEL1053117C]
10. Carter, J. F. (1978). Sunflower science and technology. [
DOI:10.2134/agronmonogr19]
11. Dimitrijevic, A., & Horn, R. (2018). Sunflower hybrid breeding: from markers to genomic selection. Frontiers in Plant Science, 8, 2238. [
DOI:10.3389/fpls.2017.02238]
12. Dosio, G. A., Tardieu, F., & Turc, O. (2011). Floret initiation, tissue expansion and carbon availability at the meristem of the sunflower capitulum as affected by water or light deficits. New Phytologist, 189(1), 94-105. [
DOI:10.1111/j.1469-8137.2010.03445.x]
13. Draffehn, A. M., Meller, S., Li, L., & Gebhardt, C. (2010). Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biology, 10, 1-15. [
DOI:10.1186/1471-2229-10-271]
14. English, S., McWilliam, J., Smith, R., & Davidson, J. (1979). Photosynthesis and partitioning of dry matter in sunflower. Functional Plant Biology, 6(2), 149-164. [
DOI:10.1071/PP9790149]
15. Evans, L. T. (1996). Crop Evolution, Adaptation and Yield. Cambridge University Press.
16. Farrar, J., & Minchin, P. (1991). Carbon partitioning in split root systems of barley: relation to metabolism. Journal of Experimental Botany, 42(10), 1261-1269. [
DOI:10.1093/jxb/42.10.1261]
17. Farrar, J., Pollock, C., & Gallagher, J. (2000). Sucrose and the integration of metabolism in vascular plants. Plant Science, 154(1), 1-11. [
DOI:10.1016/S0168-9452(99)00260-5]
18. Hall, A., Connor, D., & Whitfield, D. (1989). Contribution of pre-anthesis assimilates to grain-filling in irrigated and water-stressed sunflower crops I. Estimates using labelled carbon. Field Crops Research, 20(2), 95-112. ht [
DOI:10.1016/0378-4290(90)90044-C]
19. Hassanzadehdelouei, M., Madani, A., & Yazdanparast, N. (2023). Impact of source, sink manipulation on sunflower yield physiology under different water availability conditions. Annals of Arid Zone, 62(4), 381-385. https://doi: 10.59512/aaz.2023.62.4.13 [
DOI:10.59512/aaz.2023.62.4.13]
20. Hernández, L. F. (2015). Spatial constraints also regulates final achene mass in the sunflower (Helianthus annuus L.) capitulum. International Journal of Plant Biology, 6(1), 6014. [
DOI:10.4081/pb.2015.6014]
21. Keipp, K., Hütsch, B. W., & Schubert, S. (2019). How does the harvest index affect water-use efficiency and nutrient-utilization efficiency of sunflowers (Helianthus annuus L.)? Journal of Agronomy and Crop Science, 205(5), 519-532. [
DOI:10.1111/jac.12342]
22. Kühbauch, W., & Thome, U. (1989). Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations. Journal of Plant Physiology, 134(2), 243-250. [
DOI:10.1111/jac.12342]
23. Lindström, L. I., Pellegrini, C. N., Aguirrezábal, L. A. N., & Hernández, L. F. (2006). Growth and development of sunflower fruits under shade during pre and early post-anthesis period. Field Crops Research, 96(1), 151-159. [
DOI:10.1016/j.fcr.2005.06.006]
24. Moola Ram, M. R., & Davari, M. (2011). Seed setting and filling problem in sunflower and its management-a review. International Journal of Agronomy and Plant Production, 2(2), 33-56.
25. Najafabadi, M. S., Mirfakhraei, S. R. G., & Saatadmand, M. (2023). Introducing an index to selection sunflower genotypes for second planting date. Journal of Crop Breeding, 15(45), 149-163. [In Persian] [
DOI:10.61186/jcb.15.45.149]
26. Ochogavía, A. C., Novello, M. A., Picardi, L. A., & Nestares, G. M. (2017). Identification of suitable reference genes by quantitative real-time PCR for gene expression normalization in sunflower. Plant Omics, 10(4). [
DOI:10.21475/poj.10.04.17.pne831]
27. Palmer, J., & Steer, B. (1985). The generative area as the site of floret initiation in the sunflower capitulum and its integration to predict floret number. Field Crops Research, 11, 1-12. [
DOI:10.1016/0378-4290(85)90088-7]
28. Pereira, M. L., Berney, A., Hall, A. J., & Trápani, N. (2008). Contribution of pre-anthesis photoassimilates to grain yield: Its relationship with yield in Argentine sunflower cultivars released between 1930 and 1995. Field Crops Research, 105(1-2), 88-96. [
DOI:10.1016/j.fcr.2007.08.002]
29. Pereira, M. L., Trapani, N., & Sadras, V. (2000). Genetic improvement of sunflower in Argentina between 1930 and 1995: Part III. Dry matter partitioning and grain composition. Field Crops Research, 67(3), 215-221. [
DOI:10.1016/S0378-4290(00)00096-4]
30. Pincovici, S., Cochavi, A., Karnieli, A., Ephrath, J., & Rachmilevitch, S. (2018). Source-sink relations of sunflower plants as affected by a parasite modifies carbon allocations and leaf traits. Plant Science, 271, 100-107. [
DOI:10.1016/j.plantsci.2018.03.022]
31. Rawson, H., & Constable, G. (1980). Carbon production of sunflower cultivars in field and controlled environments. I. Photosynthesis and transpiration of leaves, stems and heads. Functional Plant Biology, 7(5), 555-573. [
DOI:10.1071/PP9800555]
32. Roitsch, T., & Tanner, W. (1996). Cell wall invertase: bridging the gap. Botanica Acta, 109(2), 90-93. [
DOI:10.1111/j.1438-8677.1996.tb00547.x]
33. Saadatmand, M., Soltani Najafabadi, M., & Mirfakhraei, S. R. (2024). Exploring Source-Sink Relationship for the Formation of Grain Yield in Sunflower. Journal of Agricultural Science and Technology, 26(6), 1373-1388. [
DOI:10.22034/JAST.26.6.1373]
34. Sadras, V., Connor, D., & Whitfield, D. (1993). Yield, yield components and source-sink relationships in water-stressed sunflower. Field Crops Research, 31(1-2), 27-39. [
DOI:10.1016/0378-4290(93)90048-R]
35. Sheligl, H. (1986). Die verwertung orgngischer souren durch chlorella lincht. Planta Journal, 47, 51.
36. Sinsawat, V., & Steer, B. T. (1993). Growth of florets of sunflower (Helianthus annuus L.) in relation to their position in the capitulum, shading and nitrogen supply. Field Crops Research, 34(1), 83-100. 10.1016/0378-4290(93)90113-2Smith, M. R., Rao, I. M., & Merchant, A. (2018). Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Frontiers in Plant Science, 9, 1889. 10.3389/fpls.2018.01889
10.3389/fpls.2018.01889 [
]
37. Steer, B., Hocking, P., & Low, A. (1988). Dry matter, minerals and carbohydrates in the capitulum of sunflower (Helianthus annuus): Effects of competition between seeds, and defoliation. Field Crops Research, 18(1), 71-85. [
DOI:10.1016/0378-4290(88)90060-3]
38. Sturm, A. (1999). Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology, 121(1), 1-8. [
DOI:10.1104/pp.121.1.1]
39. Teper‐Bamnolker, P., Roitman, M., Katar, O., Peleg, N., Aruchamy, K., Suher, S., Doron‐Faigenboim, A., Leibman, D., Omid, A., & Belausov, E. (2023). An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity. The Plant Journal, 113(2), 327-341. [
DOI:10.1111/tpj.16049]
40. Vear, F. (2016). Changes in sunflower breeding over the last fifty years. OCL Oilseeds and fats crops and lipids, 23(2), 1-8. [
DOI:10.1051/ocl/2016006]
41. White, A. C., Rogers, A., Rees, M., & Osborne, C. P. (2016). How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany, 67(1), 31-45. [
DOI:10.1093/jxb/erv447]
42. Xu, X.-x., Hu, Q., Yang, W.-n., & Jin, Y. (2017). The roles of cell wall invertase inhibitor in regulating chilling tolerance in tomato. BMC Plant Biology, 17, 1-13. [
DOI:10.1186/s12870-017-1145-9]
43. Yan, W., Wu, X., Li, Y., Liu, G., Cui, Z., Jiang, T., Ma, Q., Luo, L., & Zhang, P. (2019). Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink. Frontiers in Plant Science, 10, 541. [
DOI:10.3389/fpls.2019.00541]
44. Yarnia, B., & Rahmati, A. (2006). Evaluation of sink-source relations in two sunflower hybrids. New Finding in Agriculture, 1(2), 111-123. [In Persian]
45. Zhang, H., & Flottmann, S. (2018). Source-sink manipulations indicate seed yield in canola is limited by source availability. European Journal of Agronomy, 96, 70-76. [
DOI:10.1016/j.eja.2018.03.005]