1. André, C. M., Schafleitner, R., Legay, S., Lefèvre, I., Aliaga, C. A. A., Nomberto, G., Hoffmann, F., Larondelle, Y & Evers, D. (2009). Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry, 70(9), 1107-1116. [
DOI:10.1016/j.phytochem.2009.07.008]
2. Asghari, B., & Dashab, G. R. (2018). Nucleotide sequence analysis of phylogenetic and evolutionary status of BLG gene. New Cellular and Molecular Biotechnology Journal, 8(30), 61-71. [In Persian]
3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J., Smith, J. A., & Struhl, K. (1992). Short protocols in molecular biology. New York, 275, 28764-28773.
4. Azizyan, R & Abdollahi Mandoulakani, B. (2023). The effect of drought stress on some morphological, phytochemical, and biochemical characteristics of the medicinal plant field sowthistle (Sonchus arvensis L.). Journal of Crop Breeding, 15(47), 41-55. [In Persian] [
DOI:10.61186/jcb.15.47.41]
5. Azizyan, R & Abdollahi Mandoulakani, B. (2024). Partial coding sequence identification, gene expression analysis, and content of anticancer phenolic compounds in Sonchus arvensis L. under drought stress conditions. Industrial crops and products, 209: 118030. [
DOI:10.1016/j.indcrop.2024.118030]
6. Canter, P. H., Thomas, H., & Ernst, E. (2005). Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. TRENDS in Biotechnology, 23(4), 180-185. [
DOI:10.1016/j.tibtech.2005.02.002]
7. Comino, C., Hehn, A., Moglia, A., Menin, B., Bourgaud, F., Lanteri, S., & Portis, E. (2009). The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biology, 9(1), 1-13. [
DOI:10.1186/1471-2229-9-30]
8. Elliott, M. B., Irwin, D. M., & Diamandis, E. P. (2006). In silico identification and Bayesian phylogenetic analysis of multiple new mammalian kallikrein gene families. Genomics, 88(5), 591-599. [
DOI:10.1016/j.ygeno.2006.06.001]
9. Farah, A., Monteiro, M., Donangelo, C. M., & Lafay, S. (2008). Chlorogenic acids from green coffee extract are highly bioavailable in humans. The Journal of Nutrition, 138(12), 2309-2315. [
DOI:10.3945/jn.108.095554]
10. Ghaderi, F., & Mandoulakani, B. A. (2024). Investigation of the association between gene expression levels and phenolic compound content in the leaves of Sonchus arvensis plants under salinity stress. Heliyon, 10(22). [
DOI:10.1016/j.heliyon.2024.e40408]
11. Gouthamchandra, K., Sudeep, H., Venkatesh, B., & Prasad, K. S. (2017). Chlorogenic acid complex (CGA7), standardized extract from green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells. Food Science and Human Wellness, 6(3), 147-153. [
DOI:10.1016/j.fshw.2017.06.001]
12. Han, G., Bai, G., Wu, Y., Zhou, Y., Yao, W., & Li, L. (2022). Comparative transcriptome analysis to identify candidate genes related to chlorogenic acid and flavonoids biosynthesis in iridaceae. Forests, 13(10), 1632. [
DOI:10.3390/f13101632]
13. Lu, H., Tian, Z., Cui, Y., Liu, Z., & Ma, X. (2020). Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3130-3158. [
DOI:10.1111/1541-4337.12620]
14. Mahesh, V., Million-Rousseau, R., Ullmann, P., Chabrillange, N., Bustamante, J., Mondolot, L., ... & Campa, C. (2007). Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Molecular Biology, 64, 145-159. [
DOI:10.1007/s11103-007-9141-3]
15. Masoudi Jozchal, Z., Bagheri, N., Babaeian Jelodar, N., Ranjbar, G., & Farmani, J. (2024). Phytochemical analysis of the medicinal plant terrestrial Orchid (Orchis Simia) in the flowering stage. Journal of Crop Breeding, 16(2), 53-66. [In Persian] [
DOI:10.61186/jcb.16.2.53]
16. Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., Ahmad, F., Babazadeh, D., Modarresi-Ghazani, F., WenHua, L., & Modarresi-Ghazani, F. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine and Pharmacotherapy, 97, 67-74. [
DOI:10.1016/j.biopha.2017.10.064]
17. Nesaj Hosseini, M & Shamar Bakhsh, M. (2011). Methods of phylogenetic analysis. The first edition of Haqshanas Publications, 239 pp. [In Persian]
18. Niggeweg, R., Michael, A. J., & Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology, 22(6), 746-754. [
DOI:10.1038/nbt966]
19. Peng, X., Li, W., Wang, W., & Bai, G. (2010). Cloning and characterization of a cDNA coding a hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase involved in chlorogenic acid biosynthesis in Lonicera japonica. Planta Medica, 76(16), 1921-1926. [
DOI:10.1055/s-0030-1250020]
20. Picoult-Newberg, L., Ideker, T. E., Pohl, M. G., Taylor, S. L., Donaldson, M. A., Nickerson, D. A., & Boyce-Jacino, M. (1999). Mining SNPs from EST databases. Genome Research, 9(2), 167-174. [
DOI:10.1101/gr.9.2.167]
21. Sahraki, H., Mahdinezhad, N., Fakheri, B., & Haddadi, F. (2020). Separation and identification of FEH1 gene in thorny artichoke plant (Cynara cardunculus) and its relative expression under the influence of abiotic stresses. [In Persian]
22. Schoch, G. A., Morant, M., Abdulrazzak, N., Asnaghi, C., Goepfert, S., Petersen, M., Ullmann., P. . . & Werck-Reichhart, D. (2006). The meta-hydroxylation step in the phenylpropanoid pathway: a new level of complexity in the pathway and its regulation. Environmental Chemistry Letters, 4, 127-136. [
DOI:10.1007/s10311-006-0062-1]
23. Sheikhi, M., Fakheri, B., & Mahdinezhad, N. (2019). Study of genetic diversity and phylogenetic relationship of some gourd pumpkin (Cucurbita pepo) genotypes using the ITS ribosomal and rbcL chloroplastic genes' loci. Genetic Engineering and Biosafety Journal, 8(2), 168-177.
24. Sun, C.-H., Yang, C.-Y., & Tzen, J. T. (2018). Molecular identification and characterization of hydroxycinnamoyl transferase in tea plants (Camellia sinensis L.). International Journal of Molecular Sciences, 19(12), 3938. [
DOI:10.3390/ijms19123938]
25. Tajik, N., Tajik, M., Mack, I., & Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. European Journal of Nutrition, 56, 2215-2244. [
DOI:10.1007/s00394-017-1379-1]
26. Thasa, M. W. (2021). An Overview of the Traditional Uses, Phytochemicals, and Pharmacological Activities of Tempuyung (Sonchus arvensis L.). Journal of Pharmaceutical Sciences and Medicine (IJPSM), 6(6), 34-41. [
DOI:10.47760/ijpsm.2021.v06i06.004]
27. Wen, H., Wang, W., Jiang, X., Wu, M., Bai, H., Wu, C., & Shen, L. (2022). Transcriptome analysis to identify candidate genes related to chlorogenic acid biosynthesis during development of Korla fragrant pear in Xinjiang. Food Science and Human Wellness, 11(4), 854-864. [
DOI:10.1016/j.fshw.2022.03.007]
28. Xu, H., Park, N. I., Li, X., Kim, Y. K., Lee, S. Y., & Park, S. U. (2010). Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresource Technology, 101(24), 9715-9722. [
DOI:10.1016/j.biortech.2010.07.083]
29. Xu, J., Zhu, J., Lin, Y., Zhu, H., Tang, L., Wang, X., & Wang, X. (2022). Comparative transcriptome and weighted correlation network analyses reveal candidate genes involved in chlorogenic acid biosynthesis in sweet potato. Scientific Reports, 12(1), 2770. [
DOI:10.1038/s41598-022-06794-4]