1. Agrawal, R. (2003). Seed Technology. Pub. Co. PVT. LTD. New Delhi. India.
2. Basra, S. M. A., Ahmad, N., Khan, M. M., Iqbal, N., & Cheema, M. A. (2003). Assessment of cottonseed deterioration during accelerated ageing. Seed Science and Technology, 31(3), 531-540. [
DOI:10.15258/sst.2003.31.3.02]
3. Bailly, C., Benamar, A., Corbineau, F., & Côme, D. (2000). Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Science Research, 10(1), 35-42. [
DOI:10.1017/S0960258500000040]
4. Chauhan, D. S., & Deswal, D. P. (2019). effect of accelerated ageing variables on various seeds quality parameter in barley (Hordeum vulgare L.). Journal of Plant Development Sciences, 11(9), 511-517.
5. Chloupek, O., Dostál, V., Středa, T., Psota, V., & Dvořáčková, O. (2010). Drought tolerance of barley varieties in relation to their root system size. Plant Breeding, 129(6), 630-636. [
DOI:10.1111/j.1439-0523.2010.01801.x]
6. Figueiredo e Albuquerque, M. D., & Carvalho, N. D. (2003). Effect of the type of environmental stress on the emergence of sunflower (Helianthus annus L.), soybean (Glycine max L.) Merril) and maize (Zea mays L.) seeds with different levels of vigor. Seed Science and Technology, 31(2), 465-479. [
DOI:10.15258/sst.2003.31.2.23]
7. Bailly, C., Benamar, A., Corbineau, F., & Côme, D. (2000). Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Science Research, 10(1), 35-42. [
DOI:10.1017/S0960258500000040]
8. Delouche, J. C., & Baskin, C. C. (1973). Accelerated aging techniques for predicting the relative storability of seed lots. Seed Science and Technology, 1, 427-452.
9. Ellis, R. H., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9(2), 373-409.
10. Food and Agriculture Organization of the United Nations (2021). World Food Situation. Available online at: http://www.fao.org/worldfoodsituation/csdb/en/(accessed August 11, 2021).
11. Forcella, F., Arnold, R. L. B., Sanchez, R., & Ghersa, C. M. (2000). Modeling seedling emergence. Field Crops Research, 67(2), 123-139. [
DOI:10.1016/S0378-4290(00)00088-5]
12. Gebeyehu, B. (2020). Review on: Effect of seed storage period and storage environment on seed quality. International Journal of Applied Agricultural Sciences, 6(6), 185-190. [
DOI:10.11648/j.ijaas.20200606.14]
13. Hallauer, A. R., Carena, M. J., & Miranda Filho, J. D. (2010). Quantitative genetics in maize breeding (Vol. 6). Springer Science & Business Media. [
DOI:10.1007/978-1-4419-0766-0_12]
14. Hampton, J. G., & TeKrony, D. M. (1995). Handbook of vigour test methods, (International Seed Testing Association: Zürich, Switzerland).
15. Hoseini, F., Siadat, S. A., Bakhshandeh, A. M., & Chab, A. N. (2011). Evaluate the effect of oxygen tension on germination and seedling growth of five components of wheat. Iranian Journal of Field Crops Research, 9(4), 631-638. [In Persian]
16. ISTA. (2008). International rules for seed testing. International Seed Testing Association, Bassersdorf.
17. ISTA. (2009). International Rules for Seed Testing. Bassersdorf, Switzerland. International Seed Testing Association.
18. Kharf-Meskini, M., Sabouri, A., Olivoto, T., & Fallahi, H. A. (2023). Evaluation of wheat recombinant inbred lines compared to control cultivars in terms of different germination components based on multi-trait indices. Iranian Journal of Seed Sciences and Research, 10(4), 1-17. [In Persian]
19. Macdonald, C. M., Floyd, C. D., & Waniska, R. D. (2004). effect of accelerated aging on azie, sorghum and sorghum. Journal of Cereal Science, 39(3), 351-361 [
DOI:10.1016/j.jcs.2004.01.001]
20. McDonald, M. B. (1999). Seed deterioration: physiology, repair and assessment.
21. Modarresi, R., Rucker, M., & Tekrony, D. M. (2002). Accelerating ageing test for comparing wheat seed vigour. Seed Science and Technology, 30(3), 683-687.
22. Mohammadi, R., & Abdulahi, A. (2017). Evaluation of durum wheat genotypes based on drought tolerance indices under different levels of drought stress. Journal of Agricultural Sciences, Belgrade, 62(1), 1-14. [
DOI:10.2298/JAS1701001M]
23. Mohammadzadeh, A., Majnon Hoseini, N., Asadi, S., Moghadam, H., & Jamali, M. (2019). Effects of artificial seed ageing on germination indices, seedling establishment and yield of two red kidney bean (Phaseolus vulgaris L.) cultivars. Iranian Journal of Seed Science and Technology, 7(2), 75-94.
24. Mondal, S., & Bose, B. (2018). Accelerated Aging Affects the Germination Physiology of Wheat Seeds. International Journal of Agriculture, Environment and Biotechnology, 11(1), 209-216.
25. Nahofte Esterabad, A., Rahemi Karizaki, A., & Nakhzari Moghadam, A. (2016). Effect of seed deterioration on germination parameters and growth seedling of two maize varieties. Iranian Journal of Seed Sciences and Research, 3(2), 1-11. [In Persian]
26. Nejatnejad, H., Hamidi, A., Rahimi, M. M., Hosseinifarahi, M., & Kelidari, A. (2024). Comparison of seed cotton yield and fiber quality of Iranian and introduced medium warp cotton (Gossypium hirustum L.) cultivars. Iranian Journal of Crop Sciences, 26(1), 1-18. [In Persian]
27. Nourinejad, H., Alami Saeid, K., & Sadat, S. (2024). A Study on Genetic Diversity, Heritability, Genetic Advance, and Factor Analysis of Trait Yields and Yield Components in Promising Maize Lines. Journal of Crop Breeding, 16(2), 104-117. [In Persian] [
DOI:10.61186/jcb.16.2.104]
28. Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6), 783-789. [
DOI:10.1111/2041-210X.13384]
29. Olivoto, T., & Nardino, M. (2021). MGIDI: Toward an effective multivariate selection in biological experiments. Bioinformatics, 37(10), 1383-1389. [
DOI:10.1093/bioinformatics/btaa981]
30. Oskouei, B., & Sheidaei, S. (2017). Seed Deterioration. Iranian Journal of Seed Sciences and Research, 4(3), 125-143. [In Persian]
31. Pour-Aboughadareh, A., Sanjani, S., Nikkhah-Chamanabad, H., Mehrvar, M. R., Asadi, A., & Amini, A. (2021). Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bulletin of the National Research Centre, 45(1), 117. [
DOI:10.1186/s42269-021-00576-0]
32. Pour-Aboughadareh, A., & Poczai, P. (2021). Dataset on the use of MGIDI index in screening drought-tolerant wild wheat accessions at the early growth stage. Data in Brief, 36, 107096. [
DOI:10.1016/j.dib.2021.107096]
33. Poustini, K. (2002). An evaluation of 30 wheat cultivars regarding the response to salinity stress.
34. Ranal, M. A., & Santana, D. G. D. (2006). How and why to measure the germination process? Brazilian Journal of Botany, 29, 1-11. [
DOI:10.1590/S0100-84042006000100002]
35. Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS One, 8(6), e66428. [
DOI:10.1371/journal.pone.0066428]
36. Saber, F., Asghari Zakaria, R., Zare, N., & Farzaneh, S. (2022). Selection of salinity-tolerant durum wheat genotypes at germination stage using MGIDI and IGSI multi-trait selection indices. Cereal Research, 12(3), 263-279. [In Persian]
37. Sayed, M. A. E. A. A. (2011). QTL analysis for drought tolerance related to root and shoot traits in barley (Hordeum vulgare L.) (Doctoral dissertation, Universitäts-und Landesbibliothek Bonn).
38. Shaviklo, A. (2018). Analyses of sensory evaluation data using Principal Component Analysis (PCA). Food Science and Technology, 15(80), 361-377. [In Persian]
39. Shi, H., Guan, W., Shi, Y., Wang, S., Fan, H., Yang, J., ... & Jing, R. (2020). QTL mapping and candidate gene analysis of seed vigor-related traits during artificial aging in wheat (Triticum aestivum L.). Scientific Reports, 10(1), 22060. [
DOI:10.1038/s41598-020-75778-z]
40. Shirzad, A., Asghari, A., Zali, H., Sofalian, O., & Chamanabad, H. M. (2022). Application of the multi-trait genotype-ideotype distance index in the selection of top barley genotypes in the warm and dry region of Darab. Journal of Crop Breeding, 14(44), 65-76. [In Persian] [
DOI:10.52547/jcb.14.44.65]
41. Si, A., Sun, Z., Li, Z., Chen, B., Gu, Q., Zhang, Y., ... & Ma, Z. (2022). A genome wide association study revealed key single nucleotide polymorphisms/genes associated with seed germination in Gossypium hirsutum L. Frontiers in Plant Science, 13, 844946. [
DOI:10.3389/fpls.2022.844946]
42. TeKrony, D. M. (1995). Accelerated ageing. International Seed Testing Association: Vigour Test Committee: Seed Vigour Testing Seminar, Copenhagen, Denmark. In International Seed Testing Association, 53-72.
43. TeKrony, D. M., & Egli, D. B. (1991). Relationship of seed vigor to crop yield: a review. Crop Science, 31(3), 816-822. [
DOI:10.2135/cropsci1991.0011183X003100030054x]
44. Valipour, N., & Alipour, H. (2023). Evaluation of genetic diversity and zinc deficiency stress tolerance in spring wheat cultivars. Journal of Crop Breeding, 15(48), 1-13. [In Persian] [
DOI:10.61186/jcb.15.48.1]
45. Verma, S. S., Verma, U., & Tomer, R. P. S. (2003). Studies on seed quality parameters in deteriorating seeds in Brassica (Brassica campestris). Seed Science and Technology, 31(2), 389-396. [
DOI:10.15258/sst.2003.31.2.15]
46. Wu, Q., Shi, B., Lai, Y., Zhang, Y., Wu, Y., Li, Z., ... & Liu, Z. (2024). Genome-wide association analysis of seed vigor-related traits in wheat. Agronomy, 14(3), 410. [
DOI:10.3390/agronomy14030410]