دوره 17، شماره 4 - ( زمستان 1404 )                   جلد 17 شماره 4 صفحات 71-55 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baniaghil A, Pirdashti H, Esmaeili M, Ramezani M, Yaghoubian Y. (2025). Evaluation and Selection of Salinity-Tolerant Genotypes in Different Species of the Brassica (Brassica spp.) Genus in the Germination Stage. J Crop Breed. 17(4), 55-71. doi:10.61882/jcb.2025.1575
URL: http://jcb.sanru.ac.ir/article-1-1575-fa.html
بنی عقیل افروغ سادات، پیردشتی همت الله، اسماعیلی محمدعلی، رمضانی میترا، یعقوبیان یاسر.(1404). ارزیابی و گزینش ژنوتیپ‌ های متحمل به شوری گونه‌ های مختلف جنس براسیکا (Brassica spp.) در مرحله جوانه‌زنی پژوهشنامه اصلاح گیاهان زراعی 17 (4) :71-55 10.61882/jcb.2025.1575

URL: http://jcb.sanru.ac.ir/article-1-1575-fa.html


1- گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2- گروه زراعت، پژوهشکده ژنتیک و زیست ‌فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
3- شرکت توسعه کشت دانه ‌های روغنی مازندران، ساری، ایران
چکیده:   (717 مشاهده)
چکیده مبسوط
مقدمه: جوانه ‏زنی فرآیندی حساس برای رشد گیاه و دستیابی به عملکرد بهینه است. تنش‏ های محیطی ازجمله شوری، به ‏عنوان مهمترین عوامل محدودکننده تولیدات گیاهی، انسان را مجبور به مقابله با این تنش ‏ها از طریق اعمال مدیریت ‏های مختلف می‌کنند. کلزا (.LBrassica napus ) از مهمترین گیاهان روغنی است که در برابر شوری نسبتاً متحمل است و گزینه مناسبی برای خاک ‏های شور و سدیمی است. مقاومت به شوری کلزا برابر با جو اعلام شده است، به‌طوری‌که ارقام این گیاه تا شوری کمی بیش از هفت دسی‌زیمنس‌بر‌متر را تحمل می ‏کنند. با این وجود، این گیاه، همانند بیشتر گیاهان زراعی، در مرحله اولیه استقرار گیاهچه به شوری حساس است. ژنوتیپ‌های کلزا توانایی متفاوتی برای حفظ فعالیت‌های متابولیکی خود در شرایط شور نشان می‌دهند، اما جوانه‌زنی و مراحل خاصی از رشد بیشتر مستعد آسیب بر اثر تنش شوری هستند. بنابراین، ارزیابی تحمل به شوری در مراحل اولیه رشد به‌ویژه جوانه ‏زنی اهمیت زیادی دارد. در همین راستا، پژوهش حاضر با هدف ارزیابی و گزینش ژنوتیپ های متحمل به شوری گونه‏ های مختلف جنس براسیکا (.sppBrassica  ) در مرحله جوانه‌زنی اجرا شد.
مواد و روش‌ها: در پژوهش حاضر، میزان تحمل به شوری 100 ژنوتیپ از پنج گونه براسیکا در قالب طرح پایه کاملا تصادفی به‏ صورت فاکتوریل در سه تکرار مورد ارزیابی قرار گرفت. عامل اول شامل ژنوتیپ‏ های براسیکا (60 ژنوتیپ از گونه .LB. napus ، 15 ژنوتیپ از L. B. nigra، 15 ژنوتیپ از L.B. juncea ،  و پنج ژنوتیپ از  B. rapa L. و 5 ژنوتیپ از گونه .L B. carinata) و عامل دوم پنج سطح تنش شوری با کلریدسدیم شامل صفر (شاهد)، 5، 10، 15 و 20 دسی‌زیمنس‌بر‌متر بودند. به ‌این ‌منظور، بذور سالم پس از ضدعفونی با هیپوکلریت سدیم 5/1 درصد به پتری‌‌دیش‌های استریل دارای یک لایه کاغذصافی واتمن شماره یک منتقل شدند. قطر پتری‏دیش‌های مورد استفاده در این آزمایش 8 سانتی‌متر و تعداد بذور در هر پتری‌دیش 25 عدد بود. پس از قرارگیری بذور در پتری‌دیش‌ها، بسته به تیمارهای مورد‌نظر، مقدار پنج میلی‏ لیتر آب مقطر یا محلول‌های کلریدسدیم با پتانسیل 5، 10، 15 و 20 دسی‌زیمنس‌برمتر اضافه شد و در دستگاه ژرمیناتور با دمای 22 درجه سانتی‌گراد قرار داده شدند. بذور جوانه‌زده در فواصل زمانی 12 ساعت و تا ثابت‌شدن تعداد بذرهای جوانه ‏زده مورد شمارش قرار گرفتند. پس از جوانه‌زنی، صفاتی چون طول و وزن‌تر و خشک ریشه‏ چه و ساقه‏ چه، آغاز، پایان و یکنواختی، درصد و سرعت جوانه‏ زنی در تیمارهای مختلف مورد محاسبه قرار گرفتند. پس از انجام آزمایش و جمع ‏آوری داده ‏ها، تجزیه خوشه‌ای در سطوح مختلف شوری به ‎وسیله نرم‌افزار SPSS (نسخه 26) و به ‎روش وارد انجام شد. سپس با آنالیز واریانس و مقایسه میانگین بین گروه‏ها با استفاده از آزمون حداقل اختلاف معنی‏دار (LSD) در سطح احتمال پنج درصد، گروه برتر ژنوتیپ ‏ها در هر سطح شوری انتخاب شد. در نهایت، تجزیه واریانس و مقایسه میانگین بین ژنوتیپ ‏های موجود در گروه‏ های منتخب بر اساس روش مذکور انجام شد.
یافته‌ها: در طی انجام آزمایش، با توجه به پایین‌بودن قوه نامیه برخی از ژنوتیپ ‏ها، تعداد 20 ژنوتیپ حذف شدند و تجزیه‌و‌تحلیل داده‏ ها برای 80 ژنوتیپ انجام شد. براساس دندروگرام‏ های حاصل از تجزیه خوشه‏ ای در سطوح شوری صفر، 5 و 15 دسی ‏زیمنس‌‌بر‌متر، ژنوتیپ‏ های مورد مطالعه در سه گروه و در سطوح شوری 10 و 20 دسی ‏زیمنس‌‌بر‌‌متر در چهار گروه قرار گرفتند. در مجموع، بر اساس مقایسه میانگین بین گروه‏ های حاصل از تجزیه خوشه ‏ای، در سطوح شوری صفر، 5 و 15 دسی ‏زیمنس‌‌بر‌‌متر گروه اول و در سطوح شوری 10 و 20 دسی ‏زیمنس‌بر‌متر گروه چهارم به ‏عنوان گروه‏ های برتر انتخاب شدند و در ادامه، تجزیه واریانس و مقایسه میانگین بین ژنوتیپ‏ ها در گروه‏ های مذکور انجام شد. بر اساس نتایج تجزیه خوشه ‏ای، مقایسه میانگین گروه ‏ها و همچنین تجزیه و تحلیل ژنوتیپ‏ های گروه ‏های برتر در بیشتر صفات مورد بررسی، تفاوت‎ های معنی ‏داری بین ژنوتیپ‏ ها وجود داشتند. بر اساس یافته‌ها، تعداد 15 ژنوتیپ (شامل کدهای 141، 306، 328، 336، 346، 367، 446، 483، 509، 517، 693، 767، 831، 850 و 860) در تمام سطوح شوری مورد بررسی، همواره در گروه ‏های برتر قرار داشتند و بنابراین به‏ عنوان ژنوتیپ‏ های برتر جنس براسیکا انتخاب شدند.
نتیجه‌گیری: در مجموع، نتایج حاصل از این آزمایش نشان دادند که از بین ژنوتیپ‏ های مورد بررسی، 15 ژنوتیپ در تمام سطوح تنش شوری همواره در گروه ‏های برتر قرار داشتند. در بین ژنوتیپ‏ های منتخب، 7 ژنوتیپ از گونه .LB. napus ، 6 ژنوتیپ از .L B. juncea  و 2 ژنوتیپ ازL. B. rapa حضور داشتند. هیچ ژنوتیپی از .L B. nigra در بین ژنوتیپ‌های برتر قرار نگرفت. نتایج حاکی از این بودند که این ژنوتیپ ‏ها چه در شرایط مطلوب و چه در شرایط شوری ملایم یا شدید توانایی بالایی در جوانه‏ زنی و تولید گیاهچه قوی داشتند و می‏ توانند برای انجام مطالعات تکمیلی و نیز پژوهش‏ های اصلاحی مورد استفاده قرار گیرند. از طرفی، ژنوم گونه دیپلوئید L . B. rapa در هر دو گونه آلوتتراپلوئید L. B. napus و L.B. juncea  مشترک است ولی در ژنوم گونه آلوتتراپلوئید L. B. carinata وجود ندارد و در گونه دیپلوئید  L. B. nigra
 خویشاوند آن تحمل به شوری مشاهده نشد. بر این اساس، باید نتیجه گرفت که تحمل به تنش شوری گونه‌های متحمل جنس Brassica  از ژنوم L. B. rapa منشا گرفته ‎است.

 
متن کامل [PDF 2737 kb]   (3 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1404/1/20 | پذیرش: 1404/5/27

فهرست منابع
1. AgMRC. (2022). Grain and Oilseeds: Rapeseed. Available online: https://www.agmrc.org/commodities-products/grains-oilseeds/rapeseed (accessed on 7 February 2022).
2. Ahmadi, S. H., & Niazi Ardekani, J. (2006). The effect of water salinity on growth and physiological stages of eight Canola (Brassica napus) cultivars. Irrigation Sciences, 25(1), 11-20. [DOI:10.1007/s00271-006-0030-3]
3. Alizadeh Foroutan, M., Pirdashti, H., & Yaghoubian, Y. (2014). Effect of biological seed treatments on the resistance of the medicinal plant fennel (Foeniculum vulgare L.) to copper heavy stress during germination and seedling stage. Journal of Seed Research, 4(2), 1-12. [In Persian]
4. Aqeel, M., Khalid, N., Tufail, A., Ahmad, R. Z., Akhter, M. S., M., L., Javed, M. T., Irshad, M. K., Alamri, S., Hashem, M., & Noman, A. (2021). Elucidating the distinct interactive impact of cadmium and nickel on growth, photosynthesis, metal homeostasis, and yield responses of mung bean (Vigna radiata L.). Environmental Science and Pollution Research, 28, 27376-27390. [DOI:10.1007/s11356-021-12579-5]
5. Asghari, A., Mohammadniya, S., & Fallahi, H. (2017). Assesment of salinity tolerance in some canola cultivars using morphophysiologic traites and ISSR markers. Journal of Crop Breeding, 9(24), 166-178. [In Persian] [DOI:10.29252/jcb.9.24.166]
6. Ashraf, M. (2001). Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploids Brassica species in relation to their diploid parents. Environmental and Experimmental Botany, 45(2), 155-163. [DOI:10.1016/S0098-8472(00)00090-3]
7. Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199, 5. [DOI:10.1078/0367-2530-00165]
8. Ashraf, M., & Mcneilly, T. (2004). Salinity tolerance in brassica oilseed. Critical Reviews in Plant Science, 23(2), 157-174. [DOI:10.1080/07352680490433286]
9. Azimi Gandmani, M., Dehdari, A., Faraji, H., Movahhedi Dehnavi, M., & Alinaghizadeh, M. (2012). Effect of salinity on some quantitative and qualitative characteristics of spring rapeseed cultivars. Electronic Journal of Crop Production,, 5(1), 53-70. [In Persian]
10. Baghizadeh, A., Yazdanpanah, A., & Rostami-nejad, M. (2021). Evaluation of sesame cultivars in germination stage under salinity stress. Iranian Journal of Plant and Biotechnology, 16(1), 1-9.
11. Bahari Saravi, H., Gholami, A., Pirdashti, H., Baradaran Firouzabadi, M., & Asghari, H. R. (2019). The effects of endophyte symbiosis and spermidine foliar application on chlorophyll fluorescence and photosynthetic pigments of stevia (Stevia rebaudiana Bertoni) medicinal plant under salinity conditions. Journal of Plant Process and Function, 8(33), 47-64. [In Persian]
12. Bahari Saravi, H., Gholami, A., Pirdashti, H., Firouzabadi, M. B., & Asghari, H. R. (2021). The response of stevia (Stevia rebaudiana Bertoni) photosystem II photochemistry to fungi symbiosis and spermidine application under saline water irrigation. Russian Agricultural Sciences, 47(1), 39-43. [DOI:10.3103/S106836742101016X]
13. Bahari Saravi, H., Pirdashti, H., & Yaghoubian, Y. (2017). Response of chlorophyll fluorescence and physiological parameters of basil (Ocimum basilicum L.) to plant growth promoting rhizobacteria (PGPR) under salinity stress. Plant Process and Function, 6(19), 89-104. [In Persian]
14. Banaei, M. H. (2002). Map of Iran's soil resources and potential. Soil and Water Research Institute, Tehran, Iran. [In Persian]
15. Bybordi, A. (2010). Effects of salinity on yield and component characters in canola (Brassica napus L.). cultivars. Notulae Scientia Biologicae, 2(1), 81-83. [DOI:10.15835/nsb213560]
16. Bybordi, A., & Tabatabaei, S. J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L). Notulae Botanicae Horti Agrobotanic Cluj-Napoca, 37(1), 71-76. [DOI:10.15835/nbha3723299]
17. Bybordi, A., Tabatabaei, S. J., & Ahmadev, A. (2010). Effect of salinity on the growth and peroxidase and IAA oxidase activities in canola. Journal of Food, Agriculture and Environment, 8, 109-112.
18. Chengula, L. K. (2018). Exploring the agricultural innovation continuum the case of Kenya climate smart agriculture project. Agriculture Research Conference. World Bank Group, 27 p.
19. Davazdahemami, S. (2002). Effect of salinity stress on seed germination characteristics of 10 species of medicinal plants. Congress of Crop Sciences and Plant Breeding of Iran. Karaj, Iran, 572-571. [In Persian]
20. Davenport, R., James, R., Zakrisson, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137(3), 807-818. [DOI:10.1104/pp.104.057307]
21. Dehshiri, A., Modarres Saneve, S. M. A., Rezaei, H., & Shirani Rad, A. H. (2013). Effect of elevated concentration of atmospheric carbon dioxide on some traits of three rapeseed (Brassicc napus L.) varieties under saline conditions. Seed and Plant Production Journal, 28(1), 35-52. [In Persian]
22. Ebonus, M. (2001). Physiological study of the effects of drought stress on the germination stage and seedlings of lentil cultivars. Master's thesis in plant physiology. Science Faculty, Ferdowsi University of Mashhad, 90 p. [In Persian]
23. Epstein, E. (1985). Salt tolerant crops: Origins development and prospects of concept. Plant and Soil, 89, 187-198. [DOI:10.1007/978-94-009-5111-2_13]
24. Faghih-Abdollahi, L., Pirdashti, H., & Yaghoubian, Y. (2013). Effect of biological treatments on dill (Aniethum graveolens L.) seed germination and seedling growth of under copper contamination. Journal of Seed Science and Technology, 2(4), 13-23. [In Persian]
25. FAO. (2012). FAO Statistical Year Book 2012, World Food and Agriculture. Food and Agriculture Organization.
26. FAO. (2017a). The Future of Food and Agriculture-Trends and Challenges. Rome. Available online: https://www.fao.org/3/i6583e/i6583e.pdf (accessed on 20 January 2022).
27. FAO. (2017b). FAO Soils Portal. Available at Web site http://www.fao.org.
28. FAO. (2018). Handbook for saline soil management. Editors: Vargas, R., Pankova, E.I., Balyuk, S.A., Krasilnikov, P.V., and Khasankhanova, G.M.,.Published by the Food and Agriculture Organization of the United Nations and Lomonosov Moscow State University.
29. FAO. (2020). World Oilseed Projections. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics_agr-data-en (accessed on 11 January 2022).
30. FAO. (2023). World Food and Agriculture of the United Nations. Statistical YerBook. http://www.fao.org.
31. Fowler, J. L. (1991). Interaction of salinity and temperature on the germination of Crambe. Agronomy Journal, 83, 169-172. [DOI:10.2134/agronj1991.00021962008300010039x]
32. Franco, J., Crossa, J., Villasenor, J., Taba, S., & Eberhart, A. (1997). Classifying Mexicana maize accession using hierarchical and density search methods. Crop Science, 37, 972-980. [DOI:10.2135/cropsci1997.0011183X003700030045x]
33. Francois, L. E. (1994). Growth, seed yield and oil content of canola grown under saline conditions. Agronomy Journal, 86, 233-234. [DOI:10.2134/agronj1994.00021962008600020004x]
34. Hasani, Z., Pirdashti, H., Yaghoubian, Y., & Nouri, M. Z. (2013). Comparative effects of cold air and cold water stress on chlorophyll parameters in rice (Oryza sativa L.). International Journal of Farming and Allied Sciences, 2(21), 195-206.
35. Ilkai, M. N., & Imam, y. (2003). The effect of plant density on the yield and yield components of two cultivars of winter canola, Brassica napus L. Iranian Journal of Agricultural Sciences, 34(3), 515-509. [In Persian]
36. Jamil, M., Lee, D., Jung, K. Y., Ashraf, M., Lee, S. C., & Rha, E. S. (2006). Effect of salt stress on germination and early seedling growth of four vegetables species. Journal of Central European Agriculture, 7, 273-282.
37. Keshta, M. M., Hammad, K. M., & Sorour, W. A. I. (1999). Evaluation of rapeseed genotypes in saline soil. Proceedings of the 10 th International Rapeseed Congress, Canberra. Australia, 253-258.
38. Khajepour, M. R. (2012). Industrial plants. Academic Jihad Publications of Isfahan Industrial Unit. 580 pages. [In Persian]
39. Khalili, M., Naghavi, M. R., & Taleb Zadeh, S. J. (2020). Evaluation of changes in morphological, physiological and biochemical traits of some canola cultivars under salinity stress. Iranian Journal of Field Crop Science, 51(2), 15-28. [In Persian]
40. Khodarahmpour, Z., & Soltani, A. (2014). Evaluation of tolerance to salinity tension in Canola genotypes (Brassica napus L.) based on the seedling pregrowth. Crop Physiology Journal, 6(22), 23-36.
41. [In Persian]
42. Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press. London, 889 p.
43. Mass, E. V., & Poss, J. A. (1989). Salt sensitivity of wheat at various growth stages. Irrigation Science, 10, 29-40. [DOI:10.1007/BF00266155]
44. Maas, E. V., Poss, J. A., & Hoffman, G. J. (1986). Salinity sensitivity of sorghum at three growth stages. Irrigation Science, 7(1), 1-11. [DOI:10.1007/BF00255690]
45. Mohammad, M., Malkawi, H., & Shibili, R. (2003). Effects of arbuscular mycorrhizal fungi andmphosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. Journal of plant Nutrition, 26(1), 125-137. [DOI:10.1081/PLN-120016500]
46. Momeni, A. (2011). Geographical distribution and salinity levels of Iran's soil resources. Journal of Soil Research (Soil and Water Sciences), 24(3), 215-203.
47. Monirifar, H. (2016). Development and evaluation of a synthetic alfalfa variety for tolerance to salinity. Journal of Crop Breeding, 18(8), 176-182. [In Persian] [DOI:10.29252/jcb.8.18.176]
48. Moravveji, S., Zamani, G. R., Kafi, M., & Alizadeh, Z. (2017). Effect of different salinity levels on yield and yield components of spring canola cultivar (Brassica napus L.) and Indian mustard (B. juncea L.). Environmental Stresses in Crop Sciences, 10(3), 457-445. [In Persian]
49. Naderi Zarnaghi, R., & Toorchi, M. (2015). Classification of spring rapeseed genotypes by morphological and physiological traits related to salt tolerance. Environmental Stresses in Crop Sciences, 7(2), 233-244. [In Persian]
50. Nemati, M., Asghari, A., Sofalian, O., Rasoulzadeh, A., & Mohamaddoust Chamanabad, H. (2012). Effect of water stress on rapeseed cultivars using morpho-physiological traits and their relations with ISSR markers. Journal of Plant Physiology and Breeding, 2(2), 55-66.
51. Neumann, P. M. (1995). Inhibition of root growth by salinity stress: Toxicity or an adaptive biophysical response. In: Baluska, F., Ciamporova, O., & Barlow, P. W. (eds). Structure and Function of Roots. The Netherlands: Kluwer Academic Publishers, 299-304. [DOI:10.1007/978-94-017-3101-0_39]
52. Noori Akandi, Z., Pirdashti, H., Yaghoubian, Y., & Omran, V. G. (2016). Investigation of antioxidant enzymes activity and photosynthetic pigments content changes of stevia medicinal plant inoculated with Piriformospora indica fungi under salt stress. Journal of Crops Improvement, 18(3), 639-653.
53. [In Persian]
54. Pahl, G. (2008). Biodiesel: Growing a New Energy Economy. Chelsea Green Publishing Company: Hartford, VT, USA.
55. Penuelas, J., Isla, R., Filella, I., & Araus, J. L. (1997). Visible and near- infrared reflectance assessment of salinity effects on barley. Crop Science, 37(1), 198-202. [DOI:10.2135/cropsci1997.0011183X003700010033x]
56. Pierivatolum, J., Qasimov, N., & Maralian, H. (2010). Effect of soil water stress on yield and proline content of four wheat lines. Journal of Biotechnology, 9, 036-040.
57. Pirdashti, H., Yaghoubian, Y., Mohammadi Goltapeh, E., & Hosseini, S. J. (2012). Effect of mycorrhiza-like endophyte (Sebacina vermifera) on growth, yield and nutrition of rice (Oryza sativa L.) under salt stress. Journal of Agricultural Technology, 8(5), 1651-1661.
58. Pirzad, A. (2009). Proc. Ir. Oilseed Crops Conf., Esfehan. 21-22 Dec 2009. Esfehan. IRAN.
59. Rasel, M., Tahjib-Ul-Arif, M., Hossain, M. A., Hassan, L., Farzana, S., & Brestic, M. (2021). Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tTolerance mechanism. Journal of Plant Growth Regulation, 50(5), 1853-1868. [DOI:10.1007/s00344-020-10235-9]
60. Rashid, A., Qureshi, R. H., Holington, P. A., & Jones, R. G. (1999). Comparative responses of wheat cultivars to salinity at the seedling stage. Crop Science, 182(3), 199-207. [DOI:10.1046/j.1439-037x.1999.00295.x]
61. Saadat, S. (2019). Final report of agricultural soil quality monitoring. Soil and Water Research Institute. Agiculturarl Research, Education and Extension Organization (AREEO). [In Persian]
62. Saadia, M., Jamil, A., Akram, N. A., & Ashraf, M. (2012). A Study of Proline Metabolism (Brassica napus L.) in Canola Seedlings under Salt Stress. Molecules, 17, 5803-5815. [DOI:10.3390/molecules17055803]
63. Schillinger, W. F., & Paulitz, T. C. (2018). Canola versus wheat rotation effects on subsequent wheat yield. Field Crops Research, 223, 26-32. [DOI:10.1016/j.fcr.2018.04.002]
64. Shahbazi, M., Kiani, A. R., & Raeisi, S. (2011). Determination of salinity tolerance threshold in two rapeseed (Brassica napus L) cultivars. Crop Science Society of Iran, 13(1), 18-31. [In Persian]
65. Sharma, S. (1996). Applied Multivariate Techniques. John Wiley and Sons, Inc.USA.
66. Singh, A. (2022). Soil salinity: a global threat to sustainable development. Soil Use and Management, 38(1), 39-67. [DOI:10.1111/sum.12772]
67. Soltani, A., & Madah, V. (2010). Simple applications for teaching and research in agriculture. Ecological Scientific Association of Shahid Beheshti University, Tehran, Iran, 80p. [In Persian]
68. Soltani, A., Zeinali, E., Galeshi, S., & Latifi, N. (2002). Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Science and Technology, 30, 51-60.
69. Steppuhn, H., & Wall, K. G. (1997). Grain yields from spring-sown Canadian wheats grown in saline rooting media. Canadian Journal of Plant Science, 77(1), 63-68. [DOI:10.4141/P96-003]
70. Sun, G., Yao, T., Feng, C., Chen, L., Li, J., & Wang, L. (2017). Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growthpromoting effects on Brassica napus. Biological Control, 104, 35-43. [DOI:10.1016/j.biocontrol.2016.10.008]
71. Thompson, J. A., & Nelson, R. L. (1998). Utilization of diverse germplasm for soybean yield improvement. Crop Science, 38, 1362-1368. [DOI:10.2135/cropsci1998.0011183X003800050035x]
72. Tobe, K., Li, X. M., & Omasa, K. (2004). Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Science Research, 14, 345-353. [DOI:10.1079/SSR2004188]
73. Turhan, H. A. (2004). Effect of salinity on seedling emergence and growth of sunflower (Helianthus annuus L.) cultivars. International Journal of Agricultural Biological, 6, 149-152.
74. Valdiani, A. R., Hasanzadeh, A., & M, T. (2005). Study on the effects of salt stress in germination and embryo growth stages of the four prolific and new cultivars of winter rapeseed (Brassica napus L.). Pajouhesh & Sazandegi, 66, 23-32.
75. Werner, J. E., & Finkelstein, R. R. (1995). Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiolgia Plantarum, 93, 659-666. [DOI:10.1111/j.1399-3054.1995.tb05114.x]
76. Wilson, C., Lesch, S. M., & Grieve, C. M. (1999). growth Stage Modulates salinity Tolerance of New Zealand Spinach (Tetragonia tetragonioides Pall.) and Red Orach (Atriplex hortensis L.) Annals of Botany. Annals of Botany, 85, 501-509. [DOI:10.1006/anbo.1999.1086]
77. Yaghoubian, Y., Pirdashti, H., Mottaghian, A., & Hosseini, S. J. (2012). Effect of fluctuating salinity at different growth stages on physiological and yield related parameters of rice (Oryza sativa L.). International Journal of Agriculture, 2(3), 266-276.
78. Zabet, M., Shah-Mohammadi, F., Ghaderi, M. G., & Sayyari-Zohan, M. H. (2016). The study of salinity tolerance in cumin ecotypes at germination Stage. Journal of Applied Crop Breeding, 4(1), 17-34.
79. [In Persian]
80. Zeinali, A., Soltani, A., & Galeashi, S. (2002). Respones of germination componets to salinity stress in oilseed rape (Brassica napus L). Iranian Journal of Agricultural Sciences, 33(1), 137-145.
81. [In Persian]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb