دوره 17، شماره 2 - ( تابستان 1404 )                   جلد 17 شماره 2 صفحات 169-152 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahakpaz F, Asadi A A, Abdulahi A, Neyestani E, seif F, Khaledian M S, et al . (2025). Investigating the Stability of Seed Yield in Promising Barley Lines Using Parametric and Non-parametric Methods in Cold Dryland Climate Regions of the Country. J Crop Breed. 17(2), 152-169. doi:10.61882/jcb.2024.1567
URL: http://jcb.sanru.ac.ir/article-1-1567-fa.html
آهک پز فرهاد، اسدی علی اکبر، عبداللهی عبدالوهاب، نیستانی الیاس، سیف فرشته، خالدیان محمد شریف، و همکاران..(1404). بررسی پایداری عملکرد دانه لاین‌های امیدبخش جو با استفاده از روش‌های پارامتری و ناپارامتری در مناطق دیم اقلیم سرد کشور پژوهشنامه اصلاح گیاهان زراعی 17 (2) :169-152 10.61882/jcb.2024.1567

URL: http://jcb.sanru.ac.ir/article-1-1567-fa.html


1- بخش تحقیقات غلات، موسسه تحقیقات کشاورزی دیم کشور، مراغه، ایران
2- بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران
3- بخش تحقیقات غلات، معاونت موسسه تحقیقات کشاورزی دیم کشور، سرارود، ایران
4- بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات آموزش کشاورزی و منابع طبیعی استان خراسان شمالی، سازمان تحقیقات، آموزش و ترویج کشاورزی، بجنورد، ایران
5- بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران
6- بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات آموزش کشاورزی و منابع طبیعی استان کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، سنندج، ایران
7- بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات آموزش کشاورزی و منابع طبیعی استان اردبیل، سازمان تحقیقات، آموزش و ترویج کشاورزی، اردبیل، ایران
چکیده:   (686 مشاهده)
چکیده مبسوط
مقدمه و هدف: با توجه به تنوع موجود در شرایط اقلیمی، مدیریت زراعی و وسعت مناطق کشت جو در کشور و مشاهده عکس‌العمل‌های متفاوت ارقام مختلف به شرایط محیطی، معرفی ارقام پرمحصولی که سازگاری وسیع با شرایط متفاوت داشته باشند، دارای اهمیت خاصی است. به دلیل وجود اثر متقابل ژنوتیپ × محیط، شناسایی ارقامی که در شرایط متنوع و مختلف محیطی دارای پایداری مطلوب و عملکرد قابل قبول باشند مشکل است. در این شرایط، بررسی ارقام ‌باید در دامنه وسیعی از تغییرات محیطی در مکان‌ها و سال‌های متفاوت انجام گیرد تا اطلاعات حاصل از برآورد سازگاری و پایداری عملکرد ژنوتیپ‌ها، معیار مطمئن‌تری جهت توصیه ارقام و کارایی آن­ها باشد. روش‌های تعیین اثر متقابل ژنوتیپ × محیط به دو گروه تک ­متغیره (پارامتری و ناپارامتری) و چندمتغیره تقسیم می‌شوند. هر یک از این روش‌ها جنبه‌های مختلفی از پایداری ژنوتیپ‌ها را نشان می‌دهند و یک روش به تنهایی نمی‌تواند عملکرد یک ژنوتیپ را در محیط‌های مختلف از جنبه‌های مختلف پایداری بررسی کند. هدف از این تحقیق، انتخاب ژنوتیپ‌های امیدبخش جو با عملکرد بالا و پایداری مناسب در شرایط دیم در اقلیم سرد کشور با استفاده از روش‌های تجزیه پایداری تک متغیره پارامتری و ناپارامتری بود.
مواد و روش‌ها: 25 لاین پیشرفته و امیدبخش جو به همراه ارقام شاهد انصار، آبیدر و سرارود ۱ در شرایط دیم و در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار در ایستگاه‌های تحقیقاتی دیم مناطق سردسیر و سرد معتدل مراغه، کردستان (قاملو)، زنجان (قیدار)، اردبیل، کرمانشاه (سرارود)، شیروان و همدان به‎ مدت سه سال زراعی از سال 1396 تا 1399 مورد بررسی قرار گرفتند. برای بررسی پایداری ژنوتیپ‌ها، از روش‌های تک‌متغیره پارامتری و ناپارامتری استفاده شد. همچنین، به‎ منظور ادغام روش‌های تک‌متغیره پارامتری و ناپارامتری از روش شاخص انتخاب ژنوتیپ مطلوب SIIG استفاده شد. در نهایت، همبستگی پارامترها با عملکرد و شاخص انتخاب ژنوتیپ مطلوب نیز محاسبه شد.
یافته‌ها: تجزیه واریانس جداگانه در هرکدام از محیط‌ها نشان داد که اثر ژنوتیپ در 12 محیط از 19 محیط مطالعه شده معنی‌دار بود که نشان‌دهنده نوسان عملکرد هر ژنوتیپ از محیطی به محیط دیگر بود. تجزیه واریانس مرکب نشان داد که برهمکنش سال × مکان و ژنوتیپ × سال × مکان در سطح احتمال 1 درصد و اثر سال در سطح احتمال 5 درصد و اثر مکان و اثر ژنوتیپ در سطح 10 درصد معنی‌دار بود. اثر اصلی محیط و برهمکنش ژنوتیپ × محیط بهترتیب با 69/98 و 10/83 درصد بیشترین سهم را در مجموع مربعات کل واریانس مشاهده‌ شده در آزمایشات داشتند. تجزیه ابرهارت و راسل ژنوتیپ‌های G1، G4، G5، G8، G9، G10 و G26 را به دلیل برخورداری از کمترین مقدار انحراف از رگرسیون و ضریب رگرسیون نزدیک به یک، به‌عنوان پایدارترین ژنوتیپ‌ها شناسایی نمود؛ در نهایت با در نظر گرفتن عملکرد، ژنوتیپ‌های G9 و G10، به‌عنوان ژنوتیپ‌های پایدار با عملکرد بالا معرفی شدند. بر اساس ضریب رگرسیون خطی فینلی و ویلکینسون ژنوتیپ‌های G4، G6، G9، G11، G12، G15، G17، G20، G27 و G28 دارای ضریب رگرسیون نزدیک به یک بودند که نشان می‌دهد این ژنوتیپ‌ها دارای سازگاری عمومی به محیط‌ها هستند. بر اساس شاخص‌های اکووالانس ریک و واریانس پایداری شوکلا، ژنوتیپ‌های G8، G19، G10، G20، G9، G4، G26 و G1 به‌عنوان ژنوتیپ‌های پایدار شناسایی شدند. بر اساس ضریب تغییرات محیطی ژنوتیپ‌های G10، G1، G8، G23، G13، G2 وG5  دارای کمترین مقدار ضریب تغییرات بودند. بر اساس روش پلاستد و پترسون، ژنوتیپ‌های G10، G20، G19 و G9 بهعنوان ژنوتیپهای پایدار با عملکرد بالا انتخاب شدند. در روش پلاستد، ژنوتیپ‌های G10، G20، G19 و G9 با کمترین سهم در ایجاد اثر متقابل و دارا بودن عملکرد مطلوب به‌عنوان ژنوتیپ‌های پایدار و پر محصول معرفی شدند. بر اساس روش لین و بینز، ژنوتیپ‌های G15، G6، G21، G19، G20، G7 و G9 دارای کمترین مقادیر این آماره بودند و به‌عنوان پایدارترین ژنوتیپ‌ها معرفی شدند. بر اساس روش مجموع رتبه کانگ، ژنوتیپ‌های G20، G19، G10، G9 وG22  با کمترین مجموع رتبه به‌عنوان ژنوتیپ‌های پایدار انتخاب شدند. بر اساس پارامترهای ناصار و هیون، ژنوتیپ‌های G8، G9، G10، G1، G20، G19 وG21  و بر اساس پارامترهای تنارازو، ژنوتیپ‌های G8، G9، G10، G1، G19 و G22 با کمترین میزان رتبه به‌عنوان ژنوتیپ‌های پایدار انتخاب شدند. در نهایت براساس شاخص انتخاب ژنوتیپ ایده‌ال، ژنوتیپ‌های G10، G9، G19، G22 و G20 دارای ‌‍نزدیک‌ترین مقادیر به عدد یک بودند و عملکردی بالاتر از میانگین کل داشتند؛ بنابراین، به‌عنوان پایدارترین ژنوتیپ‌ها انتخاب شدند.
نتیجه‌گیری: بر اساس شاخص انتخاب ژنوتیپ ایده‌ال (شاخصSIIG )، ژنوتیپ‌های G10، G9، G19، G22 و G20 دارای ‌‍نزدیکترین مقادیر به عدد یک بودند و نیز عملکردی بالاتر از میانگین داشتند؛ بنابراین، به ‎عنوان پایدارترین ژنوتیپ‌ها انتخاب شدند. همچنین، استفاده از شاخص SIIG با توجه به همبستگی بالا با تمامی شاخص‎ های مورد استفاده، جهت جمع‌بندی نتایج حاصل از شاخص‌های پایداری پارامتری و ناپارامتری توصیه می‌شود.

 
متن کامل [PDF 2458 kb]   (22 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات، بیومتری
دریافت: 1403/6/25 | پذیرش: 1403/11/14

فهرست منابع
1. Abay, F., & Bjørnstad, A. (2009). Specific adaptation of barley varieties in different locations in Ethiopia. Euphytica, 167, 181-195. DOI: 10.1007/s10681-008-9858-3 [DOI:10.1007/s10681-008-9858-3]
2. Ahmadi, J., Vaezi, B., & Pour-Aboughadareh, A. R. (2016). Evaluation of forage yield stability of advanced lines of Grass pea (Lathyrus sativa L.) by parametric and non- parametric methods. Journal of Crop Breeding, 8(17), 149-159. DOI: 10.18869/acadpub.jcb.8.17.159. [In Persian] [DOI:10.18869/acadpub.jcb.8.17.159]
3. Akcura, M., & Kaya, Y. (2008). Nonparametric stability methods for interpreting G × E interaction of bread wheat genotypes (Triticum aestivum L.). Genetic and Molecular Biology, 31(4), 906-913. DOI: 10.1590/S1415-47572008000500018 [DOI:10.1590/S1415-47572008005000004]
4. Ansari Maleki, Y., Rajabi, R., Azimzadeh, S. M., Hessami, A., Soleimani, K., & Abedi Asl, G. R. (2007). Study of the compatibility and stability of grain yield of barley genotypes in cold, dry-season regions of the country. Seedlings and Seeds, 23(3), 387-402. DOI: 10.22092/spij.2017.110737
5. Badooei Delfard, R., Mostafavi, K. H., & Mohammadi, A. (2016). Genotype-environment interaction and yield stability of winter barley varieties (Hordeum vulgare L.). Journal of Crop Breeding, 20, 99-106. [In Persian]
6. Bahrami, Sh., Bihamta, M. R., & Salari, M. (2008). Yield stability analysis in hulless barley. Asian Journal of Plant Science, 7(6), 589-593. DOI: 10.3923/ajps.2008.589.593 [DOI:10.3923/ajps.2008.589.593]
7. Barati, A., Tabatabaee, S. A., Mahlooji, M. & Saberi, M. H. (2019). Evaluation of grain yield and it's stability in barley promising lines in saline areas. Agricultural Science and Sustainable Production, 29(1), 1-13. [In Persian]
8. Bhutta, W. M. (2007). The effect of cultivar on the variation spring wheat grain quality under drought condition. Cereal Research Communication, 35, 1609-1619. DOI: 10.1556/CRC.35.2007.4.8 [DOI:10.1556/CRC.35.2007.4.8]
9. Brandle, J. E., & Mcverty, P. B. E. (1994). Genotype × environment interaction and stability of seed yield of oil rapeseed corn-in Manitoba. Canadian Journal of Plant Science, 21, 233-240. DOI: 10.4141/cjps88-049 [DOI:10.4141/cjps88-049]
10. Ceccarelli, S., Grando, S., & Booth, R. H. (2006). International breeding programme and resource-poor farmers: Crop improvement in difficult environments. Available online at www. Icarda.cgigr.org
11. Changizi, M., Choukan, R., Heravan, E. M., Bihamta, M. R., & Darvish, F. (2014). Evaluation of genotype× environment interaction and stability of corn hybrids and relationship among univariate parametric methods. Canadian Journal of Plant Science, 94, 1255-1267. DOI: 10.4141/cjps2013-386 [DOI:10.4141/cjps2013-386]
12. Clevland, D. A. (2001). Is plant breeding science objective truth or social construction? The case of yield stability. Agriculture and Human Values, 18, 251-270. DOI: 10.1023/A:1011923222493 [DOI:10.1023/A:1011923222493]
13. Dashtaki, M., YazdanSepas, A., Najafi Mirak, T., Ghanadha, M. R., Joukar, R., Islampour, M. R., Moayedi, A. A., Nazeri, M., Abedi Oskooie, M. S., Aminzadeh, G., Soltani, R., Ashouri, S., & Kouchaki, A. R. (2004). Stability of grain yield and harvest index in winter and facultative bread wheat (Triticum aestivum L.) Genotypes. Seed and Plant Improvement Journal, 20(3), 263-280. DOI: 10.22092/spij.2017.110583 [In Persian]
14. Eberhart, S. A., & Russel, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6, 36-40. DOI: 10.2135/cropsci1966.0011183X000600010011x [DOI:10.2135/cropsci1966.0011183X000600010011x]
15. Ebdon, J. S., & Gauch, H. G. (2002). Additive main effect and multiplicative interaction analysis of national. Turfgrass performance trials‎: I. Interpretation of genotype-environment interaction. Crop Science, 42, 489-496. DOI: 10.2135/cropsci2002.4890 [DOI:10.2135/cropsci2002.4890]
16. Ehyaei, M., Mostafavi, K., Bakhtiar, F., & Mohammadi, A. (2022). Yield stability of bread wheat genotypes using AMMI and GGE biplot analysis. Cereal Research, 12(2), 147-165 DOI:10.22124/cr.2023.23333.1746 [In Persian]
17. Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in plant breeding program. Australian Journal of Agricultural Research, 14, 752-754, DOI: 10.1071/AR9630742 [DOI:10.1071/AR9630742]
18. Francis, T. R., & Kannenberg, L. W. (1978). Yield stability studies in short-season maize: Ι - A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58, 1029-1034, DOI: 10.4141/cjps78-157 [DOI:10.4141/cjps78-157]
19. Golkari, S., Haghparast, R., Roohi, E., Mobasser, S., Ahmadi, M. M., Soleimani, K., Khalilzadeh, G., Abedi-Asl, G., & Babaei, T. (2016). Multi-environment evaluation of winter bread wheat genotypes under rainfed conditions of Iran-using AMMI model. Crop Breeding Journal, 4, 5 and 6 (2; 1 and 2), 17-31. DOI: 10.22092/cbj.2016.107104
20. Haji Mohammad Ali Jahromi, M., Khodarahmi, M., Mohammadi, A. R. & Mohammadi, A. (2011). Stability analysis for grain yield of promising durum wheat genotypes in southern warm and dry agro-climatic zone of Iran. Iranian Journal of Crop Sciences, 13, 565-579 [In Persian] [DOI:10.1007/s12892-010-0028-5]
21. Hatami Maleki, H., Vaezi, B., Mohammadi, R., Mehraban, A., Ahmadi, A., Sabzi, Z. & … Sabgahnia, N. (2020). Stability analysis and genotype×environment interaction study for grain yield of some barley genotypes. Iranian Journal of Genetics and Plant Breeding, 9(2), 134-143. DOI: 10.30479/ijgpb.2022.15164.1291
22. Hühn, M., & Léon, J. (1995). Nonparametric analysis of cultivar performance trials: experimental results and comparison of different procedures based on ranks. Agronomy Journal, 87, 627-632, DOI: 10.2134/agronj1995.00021962008700040004x [DOI:10.2134/agronj1995.00021962008700040004x]
23. Huehn, V. M. (1990). Non-parametric measures of phenotypic stability. Part I: Theory. Euphytica, 47, 189-194. DOI: 10.1007/BF00024241 [DOI:10.1007/BF00024241]
24. Jafari, T., & Farshadfar, E. (2018). Stability analysis of bread wheat genotypes (Triticum aestivum L.) by GGE biplot. Cereal Research, 8(2), 199-208. DOI: 10.22124/C.2018.6232.1243 [In Persian]
25. Kang, M. S. (1988). A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communications, 16, 113-115.
26. Kang, M. S. (1994). Applied Quantitative Genetics. Kang Publication, Baton Rouge, LA, USA.
27. Kanouni, H., Taleei, A. R., & Khalily, M. (2007). Stability analysis of seed yield and one-hundred seeds weight in Desi type chickpea genotypes. Seed and Plant Journal, 23(3), 297-310. [DOI:10.22092/spij.2017.110731 [In Persian]]
28. Karimizadeh, R., Hosseinpour, T., Sharifi, P., Alt Jafarby, J., Shahbazi Homonlo, K., & Keshavarzi, k. (2021). Evaluation of grain yield stability of durum wheat genotypes using parametric and non-parametric methods. Plant Genetic Researches, 8(1), 115-131, DOI: 10.52547/pgr.8.1.8 [DOI:10.52547/pgr.8.1.8]
29. Karimizadeh, R., Mohammadi, M., Sabaghnia, N., Mahmoodi, A. A., Roustami, B., Seyyedi F. & Akbari, F. (2013). GGE biplot analysis of yield stability in multi-environment trials of lentil genotypes under rainfed condition. Notulae Scientia Biologicae, 5, 256-262. DOI: 10.15835/nsb529067 [DOI:10.15835/nsb529067]
30. Karimizadeh, R., Vaezi, B., Hosein Pour, T., Mehraban, A., & Ghojagh, H. (2009). Study on correlation and repeatability of parametric and multivariate statistics of grain yield stability in rainfed barley. Journal of Science and Technology of Agriculture and Natural Resources, 48, 53-62. http://jcpp.iut.ac.ir/article-1-994-en.html [In Persian]
31. Kaya, Y., & Turkoz, M. (2016). Evaluation of genotype by environment interaction for grain yield in durum wheat using non-parametric stability statistics. Turkish Journal of Field Crops, 21(1), 51-59, DOI: 10.17557/tjfc.48198 [DOI:10.17557/tjfc.48198]
32. Khalili, M., & Pour-Aboghadareh. A. (2016). Parametric and non-parametric measures for evaluating yield stability and adaptability in barley doubled haploid lines. Journal of Agricultural Science and Technology, 18(3), 789-803. http://jast.modares.ac.ir/article-23-9234-en.html
33. Kubinger, K. D. (1986). A note on non‐parametric tests for the interaction in two‐way layouts. Biometrical Journal, 28, 67-72, DOI: 10.1002/bimj.4710280113 [DOI:10.1002/bimj.4710280113]
34. Lin, C. S., & Binns, M. R. (1988). A method of analyzing cultivar×location×year experiments: A new stability parameter. Theoretical and Applied Genetics, 76, 425-430. DOI: 10.1007/BF00265344 [DOI:10.1007/BF00265344]
35. Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159, 419-432. DOI: 10.1007/s10681-007-9600-6 [DOI:10.1007/s10681-007-9600-6]
36. Mohammadi, R., Armion M., Zadhassan, E., & Eskandari, M. (2014). Analysis of genotype ×environment interaction for grain yield in rainfed durum wheat. Iranian Journal of Dryland Agriculture, 1(4), 1-16 DOI: 10.22092/IDAJ.2014.100185 [In Persian]
37. Mohammadi, R., Abdulahi, A., Haghparast, R., & Armion, M. (2007). Interpreting genotype × environment interactions for durum wheat grain yields using nonparametric methods. Euphytica, 157, 239-251, DOI: 10.1007/s10681-007-9417-3 [DOI:10.1007/s10681-007-9417-3]
38. Mohammadi, R., Abdullahi, A., Haghparast, R., Aghaee, M., & Rostaii, M. (2007). Nonparametric methods for evaluating of winter wheat genotypes in multi-environment trials. World Journal of Agricultural Sciences, 3(2), 137-242, https://api.semanticscholar.org/Corpus ID: 18224626
39. Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., & Zali, H. (2018a). Assessment of non-parametric methods in selection of stable genotypes of durum wheat (Triticum turgidum L. var. durum). Iranian Journal of Crop Sciences, 19(2), 126-138. [In Persian]
40. Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., & Zali, H. (2018b). Stability analysis of grain yield of durum wheat promising lines in warm and dry areas using parametric and non-parametric methods. Journal of Crop Production and Processing, 8(2), 79-96. [In Persian] [DOI:10.29252/jcpp.8.2.79]
41. Nassar, R., & Huehn, M. (1987). Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics, 43, 45-53. [DOI:10.2307/2531947]
42. Olivoto, T. (2019). Metan: multi environment trials analysis. R package version 1.1.0. https://github.com/TiagoOlivoto/metan (accessed 24 June 2019) DOI: 10.1101/2020.01.14.906750 [DOI:10.1101/2020.01.14.906750]
43. Peterson, C. J., Moffatt, J. M., & Erickson, J. R. (1997). Yield stability of hybrid vs. pure line hard winter wheats in regional performance trials. Crop Science, 37, 116-120, DOI: 10.2135/cropsci1997.0011183X003700010019x [DOI:10.2135/cropsci1997.0011183X003700010019x]
44. Plasted, R. L., & Peterson, L. C. (1959). A technique for evaluation the ability of selections to yield consistently in different locations or seasons. American Potato Journal, 36, 281-285, https://api.semanticscholar.org/CorpusID:13436817 [DOI:10.1007/BF02852735]
45. Plaisted, R. L. (1960). A shorter method for evaluating the ability of selections to yield consistently over locations. American Potato Journal, 37, 166-172. DOI: 10.1007/BF02855271 [DOI:10.1007/BF02855271]
46. Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P., & Siddique, K. H. M. (2019). STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences, 7(1), e1211. DOI: 10.1002/aps3.1211 [DOI:10.1002/aps3.1211]
47. Ramzi, E., Asghari, A., Sofalian, O., Mehraban, A., & Ebadi, A. (2020). Evaluation of grain yield stability and genotype- environment interaction of barley promising lines in warm and humid regions of the country. Journal of Crop Breeding. 12(36), 57-65. DOI: 10.52547/jcb.12.36.57 [In Persian] [DOI:10.52547/jcb.12.36.57]
48. Roustaie, M., Sadeghzadeh Ahari, D., Hesami, A., Soleymani, K., Pashapour, H., Nader-Mahmoudi, K., Pour Siahbidi, M. M., Ahmadi, M., Hassanpour Hosni, M., & Abedi-Asl, M. (2003). Study of adaptability and stability of grain yield of bread wheat genotypes in cold and moderate-cold dry land areas. Seed and Plant Improvement Journal, 19(2), 263-275. DOI: 10.22092/SPIJ.2017.110953 [In Persian]
49. Roustaie, M., Mogaddam, M., Mahfouzi, S., & Mohammadi, A. (1996). Comparison of stability analysis of grain yield in wheat and barley cultivars in dry lands. Proceedings of the 4th Iranian Congress of Crop Production and Plant Breeding. Isfahan University of Technology, Isfahan, Iran. 252 pp. [In Persian]
50. Sabaghnia, N., Dehghani, H., & Sabaghpour, S. H. (2006). Nonparametric methods for interpreting genotype × environment interaction of lentil genotypes. Crop Science, 46, 1100-1106, DOI: 10.2135/cropsci2005.06-0122 [DOI:10.2135/cropsci2005.06-0122]
51. Sadeghzadeh Ahari, D., Hosseini, S. K., Hosseinpour, T., Alt Jafar Bay, J., Khalilzadeh, G. H., & Alizadeh Dizaj, K. H. (2005). Study on Adaptability and Stability of Grain Yield in Durum Wheat Lines in Warm and Semi-Warm Dryland Areas, Seed and Plant Journal, 21(4), 561-576, DOI: 10.22092/spij.2017.110660
52. Sial, M. A., Arain, M. A., & Ahmad. M. (2000). Genotype × Environment interaction on bread wheat grown over multiple sites and years in Pakistan. Pakistan Journal of Botany, 32, 85-91. DOI: 10.1038/s41598-024-53052-w [DOI:10.1038/s41598-024-53052-w]
53. Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability, Heredity, 29, 237-245. DOI: 10.1038/hdy.1972.87 [DOI:10.1038/hdy.1972.87]
54. Soughi, H., Vahabzadeh, M., Kalateh-Arabi, M., Jafarby, J. A., Khavarinejad, S., Ghasemi, M., Fallahi, H. & Amini, A. (2009). Study on grain yield stability of some promising bread wheat lines in northern warm and humid climate of Iran. Seed and Plant Improvement Journal, 25(1), 211-222 DOI: 10.22092/SPIJ.2017.111023 [In Persian]
55. Taherian, M., Bihamta, M. R., Peyghambari, S. A., Alizadeh, H., & Rasoulnia, A. (2019). Stability analysis and selection of salinity tolerant barley genotypes. Journal of Crop Breedimg, 11(29), 93-103. DOI: 10.29252/jcb.11.29.93. [DOI:10.29252/jcb.11.29.93]
56. Thennarasu, K. (1995). On certain non-parametric procedures for studying genotype-environment interactions and yield stability. Ph.D. Thesis. P. J. School, IARI, New Delhi. India.
57. Vaezi, B., & Ahmadi, J. (2010). Assessment of genotype × environment interaction and stability of yield in advanced barley lines in rainfed conditions. Iranian Journal of Agricultural, 41, 395-402 DOI: 20.1001.1.20084811.1389.41.2.18.9 [In Persian]
58. Vaezi, B., Pour-Aboughadareh, A., Mohammadi, R., Mehraban, A., Hossein-Pour, T., Koohkan, E., Ghasemi, S., Moradkhani, H., & Siddique, K. H. (2019). Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes. Euphytica, 215, 63. DOI: 10.1007/s10681-019-2386-5 [DOI:10.1007/s10681-019-2386-5]
59. Wricks, G. (1962). Uber eine method zur erfassung der okoiogschen streubreite in feldversuchen. Z. Pflanzenzuchtg, 47, 92-96.
60. Yan, W. (2001). GGEbiplot - a Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal, 93, 1111-1118. DOI: 10.2134/agronj2001.9351111x [DOI:10.2134/agronj2001.9351111x]
61. Zali, H., Sofalian, O., Hasanloo, T., Asghari A., & Hoseini, S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum - An International Journal, 7(2), 703-711, DOI: 10.29252/jcb.11.29.117 [DOI:10.29252/jcb.11.29.117]
62. Zali, H., Sabaghpour, S.H., Farshadfar, E., Pezeshkpour, P., Safikhani, M., Sarparast, R., & Hashembeygi, A. (2009). Stability analysis of chickpea genotypes using ASV parameter and its comparison with other methods. Iranian Journal of Field Crop Science, 40(2): 21-29. DOI: 20.1001.1.20084811.1388.40.2.3.7 [In Persian]
63. Zarei, L., Farshadfar, E., Haghparast, R., Rajabi, R., Mohammadi Sarab Badieh, M., & Zali, H. (2012). Comparison of different methods of stability evaluation in bread wheat genotypes under drought stress conditions. Electronic Journal of Crop Breeding, 5(3), 81-97 DOI: 20.1001.1.2008739.1391.5.3.5.8 [In Persian]
64. Zeinalzadeh-Tabrizi, H., Mansouri, S., & Fallah-Toosi, A. (2021). Evaluation of seed yield stability of promising sesame lines using different parametric and nonparametric methods. Plant Genetic Researches, 8(1), 43-160. DOI: 10.52547/pgr.8.1.4 [DOI:10.52547/pgr.8.1.4]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb