1. Abd El-Daim, I. A., Bejai, S., & Meijer, J. (2019). Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Scientific Reports, 9(1), 16282. [
DOI:10.1038/s41598-019-52567-x]
2. Akter, S., Khan, M. S., Smith, E. N., & Flashman, E. (2021). Measuring ROS and redox markers in plant cells. RSC Chem Biol, 2(5), 1384-1401.
https://doi.org/10.1039/D1CB00071C [
DOI:10.1039/d1cb00071c]
3. Ali, A., Khan, M., Sharif, R., Mujtaba, M., & Gao, S.-J. (2019). Sugarcane Omics: An update on the current status of research and crop improvement. Plants, 8(9), 344. [
DOI:10.3390/plants8090344]
4. Ali, M., Rafique, F., Ali, Q., & Malik, A. (2020). Genetic modification for salt and drought tolerance in plants through SODERF3. Biological and Clinical Sciences Research Journal, 2020(1). [
DOI:10.54112/bcsrj.v2020i1.22]
5. Almeida, C. M., Donato, V., Amaral, D. O., Lima, G., Brito, G., Lima, M. d. A., . . . Silva, M. (2013). Differential gene expression in sugarcane induced by salicylic acid and under water deficit conditions. Agricultural Science Research Journals, 3(1), 38-44.
6. Almeida, D. M., Oliveira, M. M., & Saibo, N. J. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40, 326-345. [
DOI:10.1590/1678-4685-gmb-2016-0106]
7. Altpeter, F., & Oraby, H. (2010). Sugarcane. In genetic modification of plants. In genetic modification of plants. Biotechnology in Agriculture and Forestry, 453-472. [
DOI:10.1007/978-3-642-02391-0_23]
8. An, Y., Liu, L., Chen, L., & Wang, L. (2016). ALA inhibits ABA-induced stomatal closure via reducing H2O2 and Ca2+ levels in guard cells. Frontiers in Plant Science, 7, 482. [
DOI:10.3389/fpls.2016.00482]
9. Anitha, R., Mary, P. C. N., Savery, M., Sritharan, N., & Purushothaman, R. (2015). Differential responses of sugarcane (Saccharum officinarum L.) genotypes under salt stress condition. Plant Archives, 15(2), 1055-1060.
10. Arruda, P. (2012). Genetically modified sugarcane for bioenergy generation. Current Opinion in Biotechnology, 23(3), 315-322. [
DOI:10.1016/j.copbio.2011.10.012]
11. Assaha, D. V., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, 509. [
DOI:10.3389/fphys.2017.00509]
12. Augustine, S. M., Ashwin Narayan, J., Syamaladevi, D. P., Appunu, C., Chakravarthi, M., Ravichandran, V., . . . & Subramonian, N. (2015). Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Reports, 34, 247-263. [
DOI:10.1007/s00299-014-1704-6]
13. Balsalobre, T. W. A., da Silva Pereira, G., Margarido, G. R. A., Gazaffi, R., Barreto, F. Z., Anoni, C. O., . . . & Hoffmann, H. P. (2017). GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics, 18(1), 1-19. [
DOI:10.1186/s12864-016-3383-x]
14. Basnayake, J., Jackson, P., Inman-Bamber, N., & Lakshmanan, P. (2012). Sugarcane for water-limited environments. Genetic variation in cane yield and sugar content in response to water stress. Journal of Experimental Botany, 63(16), 6023-6033. [
DOI:10.1093/jxb/ers251]
15. Begcy, K., Mariano, E. D., Lembke, C. G., Zingaretti, S. M., Souza, G. M., Araújo, P., & Menossi, M. (2019). Overexpression of an evolutionarily conserved drought-responsive sugarcane gene enhances salinity and drought resilience. Annals of Botany, 124(4), 691-700. [
DOI:10.1093/aob/mcz044]
16. Belesini, A., Carvalho, F., Telles, B., De Castro, G., Giachetto, P., Vantini, J., . . . & Ferro, M. (2017). De novo transcriptome assembly of sugarcane leaves submitted to prolonged water-deficit stress. Genetics and Molecular Research, 16(2), 10.4238. [
DOI:10.4238/gmr16028845]
17. Bhat, J. A., Deshmukh, R., Zhao, T., Patil, G., Deokar, A., Shinde, S., & Chaudhary, J. (2020). Harnessing High-throughput Phenotyping and Genotyping for Enhanced Drought Tolerance in Crop Plants. Journal of Biotechnology, 324, 248-260.
https://doi.org/10.1016/j.jbiotec.2020.11.010 [
DOI:https://doi.org/10.1016/j.jbiotec.2020.11.010]
18. Birch, R. G., Bower, R. S., & Elliott, A. R. (2010). Highly efficient, 5′-sequence-specific transgene silencing in a complex polyploid. Tropical Plant Biology, 3, 88-97. [
DOI:10.1007/s12042-010-9047-0]
19. Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41-52. [
DOI:10.1016/j.biotechadv.2014.12.006]
20. Bosch, S., Rohwer, J. M., & Botha, F. C. (2003, August). The sugarcane metabolome. In Proc S Afr Sug Technol Ass. Mount Edgecombe: South African Sugar Technologists Association, 7, 129-133.
21. Brunner, I., Herzog, C., Dawes, M. A., Arend, M., & Sperisen, C. (2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547. [
DOI:10.3389/fpls.2015.00547]
22. Cai, M., Lin, J., Li, Z., Lin, Z., Ma, Y., Wang, Y., & Ming, R. (2020). Allele specific expression of Dof genes responding to hormones and abiotic stresses in sugarcane. PloS One, 15(1), e0227716. [
DOI:10.1371/journal.pone.0227716]
23. Canellas, L. P., Canellas, N. O., da S. Irineu, L. E. S., Olivares, F. L., & Piccolo, A. (2020). Plant chemical priming by humic acids. Chemical and Biological Technologies in Agriculture, 7, 1-17. [
DOI:10.1186/s40538-020-00178-4]
24. Carnavale Bottino, M., Rosario, S., Grativol, C., Thiebaut, F., Rojas, C. A., Farrineli, L., . . . & Ferreira, P. C. G. (2013). High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PloS One, 8(3), e59423. [
DOI:10.1371/journal.pone.0059423]
25. Carrillo-Bermejo, E. A., Gamboa-Tuz, S. D., Pereira-Santana, A., Keb-Llanes, M. A., Castaño, E., Figueroa-Yañez, L. J., & Rodriguez-Zapata, L. C. (2020). The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress. Journal of Plant Research, 133, 897-909. [
DOI:10.1007/s10265-020-01230-y]
26. Cassaniti, C., Romano, D., & Flowers, T. J. (2012). The response of ornamental plants to saline irrigation water. Irrigation-Water Management, Pollution and Alternative Strategies, 131, 158. [
DOI:10.5772/31787]
27. Chen, Y., Ma, J., Zhang, X., Yang, Y., Zhou, D., Yu, Q., . . . & Guo, J. (2017). A novel non-specific lipid transfer protein gene from sugarcane (NsLTPs), obviously responded to abiotic stresses and signaling molecules of SA and MeJA. Sugar Tech, 19, 17-25. [
DOI:10.1007/s12355-016-0431-4]
28. Chiconato, D. A., Junior, G., dos Santos, D. M., & Munns, R. (2019). Adaptation of sugarcane plants to saline soil. Environmental and Experimental Botany, 162, 201-211. [
DOI:10.1016/j.envexpbot.2019.02.021]
29. Cho, K.-H., Kim, M. Y., Kwon, H., Yang, X., & Lee, S.-H. (2021). Novel QTL identification and candidate gene analysis for enhancing salt tolerance in soybean (Glycine max L. Merr.). Plant Science, 313, 111085. [
DOI:10.1016/j.plantsci.2021.111085]
30. Cramer, G. R. (2002). Sodium-calcium interactions under salinity stress. In Salinity: Environment-Plants-Molecules (pp. 205-227). Springer. [
DOI:10.1007/0-306-48155-3_10]
31. Cruz, F. J. R., da Costa Ferreira Junior, D., & dos Santos, D. M. M. (2018). Low salt stress affects physiological parameters and sugarcane plant growth. Australian Journal of Crop Science, 12(8), 1272-1279. [
DOI:10.21475/ajcs.18.12.08.PNE999]
32. Cui, D.-L., Meng, J.-Y., Ren, X.-Y., Yue, J.-J., Fu, H.-Y., Huang, M.-T., . . . & Gao, S.-J. (2020). Genome-wide identification and characterization of DCL, AGO and RDR gene families in Saccharum spontaneum. Scientific Reports, 10(1), 13202. [
DOI:10.1038/s41598-020-70061-7]
33. Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53. [
DOI:10.3389/fenvs.2014.00053]
34. de Almeida Silva, M., Pincelli, R. P., & de Moraes Barbosa, A. (2018). Efeitos do estresse hídrico na fluorescência e conteúdo de clorofila em cultivares de cana-de-açúcar com tolerância contrastante. Bioscience Journal, 34(1), 75-87. [
DOI:10.14393/BJ-v34n1a2018-36570]
35. Demetriou, G., Neonaki, C., Navakoudis, E., & Kotzabasis, K. (2007). Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(4), 272-280. [
DOI:10.1016/j.bbabio.2007.02.020]
36. Dhansu, P., Kumar, A., Mann, A., Kumar, R., Meena, B., Sheoran, P., . . . & Kulshreshtha, N. (2018). Insights into biotechnological interventions for sugarcane improvement. Biotechnology to Enhance Sugarcane Productivity and Stress Tolerance, 115-136. [
DOI:10.1201/9781315152776-7]
37. Dhansu, P., Kumar, R., Kumar, A., Vengavasi, K., Raja, A. K., Vasantha, S., . . . & Pandey, S. K. (2022). Differential Physiological Traits, Ion Homeostasis and Cane Yield of Sub-Tropical Sugarcane Varieties in Response to Long-Term Salinity Stress. Sustainability, 14(20), 13246. [
DOI:10.3390/su142013246]
38. Dias, N. d. S., & Blanco, F. F. (2010). Efeitos dos sais no solo e na planta.
39. Dong, S., Delucca, P., Geijskes, R. J., Ke, J., Mayo, K., Mai, P., . . . & Yarnall, M. (2014). Advances in Agrobacterium-mediated sugarcane transformation and stable transgene expression. Sugar Tech, 16(4), 366-371. [
DOI:10.1007/s12355-013-0294-x]
40. Dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F., & Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses, 2(1), 113-135. [
DOI:10.3390/stresses2010009]
41. Dresselhaus, T., & Hückelhoven, R. (2018). Biotic and abiotic stress responses in crop plants. In (Vol. 8, pp. 267): MDPI. [
DOI:10.3390/agronomy8110267]
42. Duarte, B., Sleimi, N., & Caçador, I. (2014). Biophysical and biochemical constraints imposed by salt stress: learning from halophytes. Frontiers in Plant Science, 5, 746. [
DOI:10.3389/fpls.2014.00746]
43. Estavillo, G. M., Crisp, P. A., Pornsiriwong, W., Wirtz, M., Collinge, D., Carrie, C., . . . & Javot, H. (2011). Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. The Plant Cell, 23(11), 3992-4012. [
DOI:10.1105/tpc.111.091033]
44. Fahad, S., & Bano, A. (2012). Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pakistan Journal of Botany, 44(4), 1433-1438.
45. Farnese, F. S., Menezes-Silva, P. E., Gusman, G. S., & Oliveira, J. A. (2016). When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Frontiers in Plant Science, 7, 471. [
DOI:10.3389/fpls.2016.00471]
46. Feng, J., Yang, J., Yang, W., Chen, J., Jiang, M., & Zou, X. (2018). Metabolome-and genome-scale model analyses for engineering of Aureobasidium pullulans to enhance polymalic acid and malic acid production from sugarcane molasses. Biotechnology for Biofuels, 11, 1-13. [
DOI:10.1186/s13068-018-1099-7]
47. Figueroa-Rodríguez, K. A., Hernández-Rosas, F., Figueroa-Sandoval, B., Velasco-Velasco, J., & Aguilar Rivera, N. (2019). What has been the focus of sugarcane research? A bibliometric overview. International Journal of Environmental Research and Public Health, 16(18), 3326. [
DOI:10.3390/ijerph16183326]
48. Forough, J. F., Avinash, T., & Rachayya, D. (2017). Analysis of Molecular Assortment in Sugarcane Varieties using RAPD and ISSR markers. Research Journal of Biotechnology, 1(12), 12.
49. Fukuhara, S., Terajima, Y., Irei, S., Sakaigaichi, T., Ujihara, K., Sugimoto, A., & Matsuoka, M. (2013). Identification and characterization of intergeneric hybrid of commercial sugarcane (Saccharum spp. hybrid) and Erianthus arundinaceus (Retz.) Jeswiet. Euphytica, 189(3), 321-327. [
DOI:10.1007/s10681-012-0748-3]
50. Gomathi, R., Vasantha, S., & Thandapani, V. (2010). Mechanism of osmo regulation in response to salinity stress in sugarcane. Sugar Tech, 12, 305-311. [
DOI:10.1007/s12355-010-0042-4]
51. Govindaraj, P., & Mahadevaswamy, H. (2021). Collection, characterization and diversity analysis of new wild sugarcane germplasm collected from Western Ghats: A rich biodiversity spot in India. Sugar Tech, 23(3), 484-498. [
DOI:10.1007/s12355-020-00933-9]
52. Guerzoni, J. T. S., Belintani, N. G., Moreira, R. M. P., Hoshino, A. A., Domingues, D. S., Filho, J. C. B., & Vieira, L. G. E. (2014). Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiologiae Plantarum, 36, 2309-2319. [
DOI:10.1007/s11738-014-1579-8]
53. Guimarães, E. R., Mutton, M. A., Mutton, M. J. R., Ferro, M. I. T., Ravaneli, G. C., & Silva, J. A. d. (2008). Free proline accumulation in sugarcane under water restriction and spittlebug infestation. Scientia Agricola, 65, 628-633. [
DOI:10.1590/S0103-90162008000600009]
54. Gujjar, R. S., & Supaibulwatana, K. (2019). The mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants, 8(12), 542. [
DOI:10.3390/plants8120542]
55. Gupta, A., Bano, A., Rai, S., Dubey, P., Khan, F., Pathak, N., & Sharma, S. (2021). Plant Growth Promoting Rhizobacteria (PGPR): A sustainable agriculture to rescue the vegetation from the effect of biotic stress: A Review. Lett. Appl. NanoBiosci, 10, 2459-2465. [
DOI:10.33263/LIANBS103.24592465]
56. Gupta, A., Bano, A., Rai, S., Kumar, M., Ali, J., Sharma, S., & Pathak, N. (2021). ACC deaminase producing plant growth promoting rhizobacteria enhance salinity stress tolerance in Pisum sativum. 3 Biotech, 11(12), 514. [
DOI:10.1007/s13205-021-03047-5]
57. Gupta, A., Mishra, R., Rai, S., Bano, A., Pathak, N., Fujita, M., Hasanuzzaman, M. (2022). Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture. International Journal of Molecular Sciences, 23(7), 3741. [
DOI:10.3390/ijms23073741]
58. Ha-Tran, D. M., Nguyen, T. T. M., Hung, S.-H., Huang, E., & Huang, C.-C. (2021). Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. International Journal of Molecular Sciences, 22(6), 3154. [
DOI:10.3390/ijms22063154]
59. Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., . . . & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. [
DOI:10.3390/antiox9080681]
60. He, A.-L., Niu, S.-Q., Zhao, Q., Li, Y.-S., Gou, J.-Y., Gao, H.-J., . . . & Zhang, J.-L. (2018). Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron. International Journal of Molecular Sciences, 19(2), 469. [
DOI:10.3390/ijms19020469]
61. Himmelbach, A., Yang, Y., & Grill, E. (2003). Relay and control of abscisic acid signaling. Current Opinion in Plant Biology, 6(5), 470-479. [
DOI:10.1016/S1369-5266(03)00090-6]
62. Hoang, N. V., Furtado, A., McQualter, R. B., & Henry, R. J. (2015). Next generation sequencing of total DNA from sugarcane provides no evidence for chloroplast heteroplasmy. New Negatives in Plant Science, 1, 33-45. [
DOI:10.1016/j.neps.2015.10.001]
63. Huang, W., Sun, D., Chen, L., & An, Y. (2021). Integrative analysis of the microbiome and metabolome in understanding the causes of sugarcane bitterness. Scientific Reports, 11(1), 6024. [
DOI:10.1038/s41598-021-85433-w]
64. Iman talab, A. R., Hazrati, S., & Pasban eslam, B. (2024). Evaluation of Morphological, Physiological, and Agronomical Traits Related to the Productivity of Some Promising Rapeseed Genotypes in Saline Areas [Applicable]. Journal of Crop Breeding, 16(2), 118-135.
https://doi.org/10.61186/jcb.16.2.118 [
DOI:10.61186/jcb.16.2.118. [In Persian]]
65. Jain, R., Chandra, A., Venugopalan, V. K., & Solomon, S. (2015). Physiological changes and expression of SOD and P5CS genes in response to water deficit in sugarcane. Sugar Tech, 17, 276-282. [
DOI:10.1007/s12355-014-0317-2]
66. Jaiphong, T., Tominaga, J., Watanabe, K., Nakabaru, M., Takaragawa, H., Suwa, R., . . . & Kawamitsu, Y. (2016). Effects of duration and combination of drought and flood conditions on leaf photosynthesis, growth and sugar content in sugarcane. Plant Production Science, 19(3), 427-437. [
DOI:10.1080/1343943X.2016.1159520]
67. Jangpromma, N., Kitthaisong, S., Daduang, S., Jaisil, P., & Thammasirirak, S. (2007). 18 kDa protein accumulation in sugarcane leaves under drought stress conditions. Current Applied Science and Technology, 7(1-1), 44-54.
68. Jangpromma, N., Thammasirirak, S., Jaisil, P., & Songsri, P. (2012). Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane ('Saccharum officinarum'L.). Australian Journal of Crop Science, 6(8), 1298-1304.
69. Kannan, B., Jung, J. H., Moxley, G. W., Lee, S. M., & Altpeter, F. (2018). TALEN‐mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnology Journal, 16(4), 856-866. [
DOI:10.1111/pbi.12833]
70. Kesawat, M. S., Satheesh, N., Kherawat, B. S., Kumar, A., Kim, H. U., Chung, S. M., & Kumar, M. (2023). Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. Plants (Basel), 12(4). [
DOI:10.3390/plants12040864]
71. Khan, A., Khan, A. L., Muneer, S., Kim, Y.-H., Al-Rawahi, A., & Al-Harrasi, A. (2019). Silicon and salinity: Crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in Plant Science, 10, 1429. [
DOI:10.3389/fpls.2019.01429]
72. Khueychai, S., Jangpromma, N., Daduang, S., Jaisil, P., Lomthaisong, K., Dhiravisit, A., & Klaynongsruang, S. (2015). Comparative proteomic analysis of leaves, leaf sheaths, and roots of drought-contrasting sugarcane cultivars in response to drought stress. Acta Physiologiae Plantarum, 37, 1-16. [
DOI:10.1007/s11738-015-1826-7]
73. Kibria, M. G., & Hoque, M. A. (2019). A review on plant responses to soil salinity and amelioration strategies. Open Journal of Soil Science, 9(11), 219. [
DOI:10.4236/ojss.2019.911013]
74. Kumar, M., Giri, V. P., Pandey, S., Gupta, A., Patel, M. K., Bajpai, A. B., . . . & Siddique, K. H. (2021). Plant-Growth-Promoting Rhizobacteria emerging as an effective bioinoculant to improve the growth, production, and stress tolerance of vegetable crops. International Journal of Molecular Sciences, 22(22), 12245. [
DOI:10.3390/ijms222212245]
75. Kumar, R., Sagar, V., Verma, V. C., Kumari, M., Gujjar, R. S., Goswami, S. K., . . . & Srivastava, S. (2023). Drought and Salinity Stress Induced Physio-Biochemical Changes in Sugarcane: An Overview of Tolerance Mechanism and Mitigating Approaches. Frontiers in Plant Science, 14, 1225234. [
DOI:10.3389/fpls.2023.1225234]
76. Kumar, T., Uzma, Khan, M. R., Abbas, Z., & Ali, G. M. (2014). Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Molecular Biotechnology, 56, 199-209. [
DOI:10.1007/s12033-013-9695-z]
77. Lekshmi, M., Pazhany, A. S., Sobhakumari, V., & Premachandran, M. N. (2017). Nuclear and cytoplasmic contributions from Erianthus arundinaceus (Retz.) Jeswiet in a sugarcane hybrid clone confirmed through genomic in situ hybridization and cytoplasmic DNA polymorphism. Genetic Resources and Crop Evolution, 64, 1553-1560. [
DOI:10.1007/s10722-016-0453-5]
78. Li, A., Lakshmanan, P., He, W., Tan, H., Liu, L., Liu, H., . . . & Chen, Z. (2020). Transcriptome profiling provides molecular insights into auxin-induced adventitious root formation in sugarcane (Saccharum spp. interspecific hybrids) Microshoots. Plants, 9(8), 931. [
DOI:10.3390/plants9080931]
79. Li, C., Nong, Q., Solanki, M. K., Liang, Q., Xie, J., Liu, X., . . . & Li, Y. (2016). Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Scientific Reports, 6(1), 25698. [
DOI:10.1038/srep25698]
80. Li, P., Chai, Z., Lin, P., Huang, C., Huang, G., Xu, L., . . . & Zhao, X. (2020). Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.). BMC genomics, 21(1), 1-17. [
DOI:10.1186/s12864-020-07076-x]
81. Li, Z., Hua, X., Zhong, W., Yuan, Y., Wang, Y., Wang, Z., . . . & Zhang, J. (2020). Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum. Plant and Cell Physiology, 61(3), 616-630. [
DOI:10.1093/pcp/pcz227]
82. Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. [
DOI:10.1016/j.bbrc.2017.11.043]
83. Liu, S., & Qin, F. (2021). Genetic dissection of maize drought tolerance for trait improvement. Molecular Breeding, 41, 1-13. [
DOI:10.1007/s11032-020-01194-w]
84. Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., & Piernik, A. (2021). Osmotic stress or ionic composition: which affects the early growth of crop species more? Agronomy, 11(3), 435. [
DOI:10.3390/agronomy11030435]
85. Luo, M., Zhang, Y., Chen, K., Kong, M., Song, W., Lu, B., . . . & Zhao, J. (2019). Mapping of quantitative trait loci for seedling salt tolerance in maize. Molecular Breeding, 39, 1-12. [
DOI:10.1007/s11032-019-0974-7]
86. Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Frontiers in Plant Science, 11, 591911. [
DOI:10.3389/fpls.2020.591911]
87. Manners, J., McIntyre, L., Casu, R., Cordeiro, G., Jackson, M., Aitken, K., . . . & Henry, R. (2004). Can genomics revolutionize genetics and breeding in sugarcane. Proceedings of the 4th International Crop Science Congress,
88. Manoj, V. M., Anunanthini, P., Swathik, P. C., Dharshini, S., Ashwin Narayan, J., Manickavasagam, M., . . . & Ram, B. (2019). Comparative analysis of glyoxalase pathway genes in Erianthus arundinaceus and commercial sugarcane hybrid under salinity and drought conditions. BMC Genomics, 19, 1-16. [
DOI:10.1186/s12864-018-5349-7]
89. Markad, N., Kale, A., Pawar, B., Jadhav, A., & Patil, S. (2014). Molecular characterization of sugarcane (Saccharum officinarum L.) genotypes in relation to salt tolerance. Bioscan, 9(4), 1785-1788.
90. Mazalmazraei, T., Nejadsadeghi, L., Mehdi Khanlou, K., & Ahmadi, D. N. (2023). Comparative analysis of differentially expressed miRNAs in leaves of three sugarcanes (Saacharum officinarum L.) cultivars during salinity stress. Molecular Biology Reports, 50(1), 485-492. [
DOI:10.1007/s11033-022-07349-6]
91. Medeiros, C. D., Ferreira Neto, J. R., Oliveira, M. T., Rivas, R., Pandolfi, V., Kido, E. A., . . . & Santos, M. G. (2014). Photosynthesis, antioxidant activities and transcriptional responses in two sugarcane (Saccharum officinarum L.) cultivars under salt stress. Acta Physiologiae Plantarum, 36, 447-459. [
DOI:10.1007/s11738-013-1425-4]
92. Meena, M. R., Kumar, R., Chinnaswamy, A., Karuppaiyan, R., Kulshreshtha, N., & Ram, B. (2020). Current breeding and genomic approaches to enhance the cane and sugar productivity under abiotic stress conditions. 3 Biotech, 10(10), 440. [
DOI:10.1007/s13205-020-02416-w]
93. Miller, G., Suzuki, N., Ciftci‐Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453-467. [
DOI:10.1111/j.1365-3040.2009.02041.x]
94. Misra, V., Solomon, S., Mall, A., Prajapati, C., Hashem, A., Abd_Allah, E. F., & Ansari, M. I. (2020). Morphological assessment of water stressed sugarcane: A comparison of waterlogged and drought affected crop. Saudi Journal of Biological Sciences, 27(5), 1228-1236. [
DOI:10.1016/j.sjbs.2020.02.007]
95. Mohan, C. (2016). Genome editing in sugarcane: challenges ahead. Frontiers in Plant Science, 7, 1542. [
DOI:10.3389/fpls.2016.01542]
96. Mohinani, P., Mohinani, T., Bhooshan, B., & Kumar, D. (2021). Plants Responses and the Role of phytohormones against salinity stress. Plant Archives (09725210), 21(1). [
DOI:10.51470/PLANTARCHIVES.2021.v21.no1.158]
97. Moradi, M., & Soltani Hoveize, M. (2021). Evaluation of Selection Indices for Improving Gane yield in Sugarcane (Saccharum officinarum L.). Journal of Crop Breeding, 13(40), 91-100. [In Persian] [
DOI:10.52547/jcb.13.40.91]
98. Moradi, M., Soltani Howyzeh, M., & Ebrahimi, A. (2016). Detection of traits affecting canola yield under drought stress by multivariate analysis. International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS), 5, 582-587.
99. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. [
DOI:10.1146/annurev.arplant.59.032607.092911]
100. Murad, A. M., Molinari, H. B. C., Magalhaes, B. S., Franco, A. C., Takahashi, F. S. C., de Oliveira-, N. G., . . . & Quirino, B. F. (2014). Physiological and proteomic analyses of Saccharum spp. grown under salt stress. PloS One, 9(6), e98463. [
DOI:10.1371/journal.pone.0098463]
101. Mustafa, G., Joyia, F. A., Anwar, S., Parvaiz, A., & Khan, M. S. (2018). Biotechnological interventions for the improvement of sugarcane crop and sugar production. Sugarcane-Technology and Research; IntechOpen: London, UK, 113-138. [
DOI:10.5772/intechopen.71496]
102. Naidoo, S., Antwerpen, R., & Pammenter, N. (2004). Quantifying the effect of soil salinity on the physiology of three South African sugarcane varieties. Proceedings of the South African Sugar Technologists Association, 78.
103. Nakhla, W. R., Sun, W., Fan, K., Yang, K., Zhang, C., & Yu, S. (2021). Identification of QTLs for salt tolerance at the germination and seedling stages in rice. Plants, 10(3), 428. [
DOI:10.3390/plants10030428]
104. Negi, P., Pandey, M., Dorn, K. M., Nikam, A. A., Devarumath, R. M., Srivastava, A. K., & Suprasanna, P. (2020). Transcriptional reprogramming and enhanced photosynthesis drive inducible salt tolerance in sugarcane mutant line M4209. Journal of Experimental Botany, 71(19), 6159-6173. [
DOI:10.1093/jxb/eraa339]
105. Nerkar, G., Thorat, A., Sheelavantmath, S., Kassa, H. B., & Devarumath, R. (2018). Genetic transformation of sugarcane and field performance of transgenic sugarcane. Biotechnologies of Crop Improvement, Volume 2: Transgenic Approaches, 207-226. [
DOI:10.1007/978-3-319-90650-8_9]
106. Nezhad, S., Khodarahmpour, Z., & Howyzeh, M. S. (2018). Grouping of wheat (Triticum aestivum L.) varieties on the morpho-physiologic characteristics under salinity stress condition. Iranian Journal of Seed Science and Research, 4(4).
107. Ngamhui, N.-o., Akkasaeng, C., Zhu, Y. J., Tantisuwichwong, N., Roytrakul, S., & Sansayawichai, T. (2012). Differentially expressed proteins in sugarcane leaves in response to water deficit stress. Plant Omics, 5(4), 365-371.
108. Niazian, M., Howyzeh, M. S., & Sadat-Noori, S. A. (2021). Integrative effects of stress-and stress tolerance-inducing elicitors on in vitro bioactive compounds of ajowan [Trachyspermum ammi (L.) Sprague] medicinal plant. Plant Cell, Tissue and Organ Culture (PCTOC), 146(3), 589-604. [
DOI:10.1007/s11240-021-02096-1]
109. Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., . . . & Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: a review. International Journal of Molecular Sciences, 20(14), 3519. [
DOI:10.3390/ijms20143519]
110. Oliveira, G. K., Soares, N. R., Costa, Z. P., Almeida, C. B., Machado, R. M., Mesquita, A. T., . . . & Vieira, M. L. C. (2022). Meiotic abnormalities in sugarcane (Saccharum spp.): Evidence for peri-and paracentric inversions. [
DOI:10.21203/rs.3.rs-2216232/v1]
111. Pacheco, C. M., Pestana-Calsa, M. C., Gozzo, F. C., Mansur Custodio Nogueira, R. J., Menossi, M., & Calsa Junior, T. (2013). Differentially delayed root proteome responses to salt stress in sugar cane varieties. Journal of Proteome Research, 12(12), 5681-5695. [
DOI:10.1021/pr400654a]
112. Pagariya, M. C., Harikrishnan, M., Kulkarni, P. A., Devarumath, R. M., & Kawar, P. G. (2011). Physio-biochemical analysis and transcript profiling of Saccharum officinarum L. submitted to salt stress. Acta Physiologiae Plantarum, 33, 1411-1424. [
DOI:10.1007/s11738-010-0676-6]
113. Pan, T., Liu, M., Kreslavski, V. D., Zharmukhamedov, S. K., Nie, C., Yu, M., . . . & Shabala, S. (2021). Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 51(8), 791-825. [
DOI:10.1080/10643389.2020.1735231]
114. Pan, Y.-B., Wei, Q., Cordeiro, G., Legendre, B., & Henry, R. (2004). New Saccharum hybrids in S. spontaneum cytoplasm developed through a combination of conventional and molecular breeding approaches. [
DOI:10.1079/PGR200442]
115. Parisi, C., Tillie, P., & Rodriguez, C. E. (2016). The Global Pipeline of GM crops: an outlook for 2020. Nature Biotechnology, 34(1), 31-6. [
DOI:10.1038/nbt.3449]
116. Passamani, L. Z., Barbosa, R. R., Reis, R. S., Heringer, A. S., Rangel, P. L., Santa-Catarina, C., . . . & Silveira, V. (2017). Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots. PloS One, 12(4), e0176076. [
DOI:10.1371/journal.pone.0176076]
117. Patade, V. Y., Bhargava, S., & Suprasanna, P. (2011). Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interactions, 6(4), 275-282. [
DOI:10.1080/17429145.2011.557513]
118. Patade, V. Y., Bhargava, S., & Suprasanna, P. (2012). Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Molecular Biology Reports, 39, 3311-3318. [
DOI:10.1007/s11033-011-1100-z]
119. Patade, V. Y., Rai, A. N., & Suprasanna, P. (2011). Expression analysis of sugarcane shaggy-like kinase (SuSK) gene identified through cDNA subtractive hybridization in sugarcane (Saccharum officinarum L.). Protoplasma, 248, 613-621. [
DOI:10.1007/s00709-010-0207-8]
120. Patade, V. Y., & Suprasanna, P. (2009). An in vitro radiation induced mutagenesis-selection system for salinity tolerance in sugarcane. Sugar Tech, 11, 246-251. [
DOI:10.1007/s12355-009-0042-4]
121. Patade, V. Y., & Suprasanna, P. (2010). Short-term salt and PEG stresses regulate expression of MicroRNA, miR159 in sugarcane leaves. Journal of Crop Science and Biotechnology, 13, 177-182. [
DOI:10.1007/s12892-010-0019-6]
122. Prabu, G., & Theertha Prasad, D. (2012). Functional characterization of sugarcane MYB transcription factor gene promoter (PScMYBAS1) in response to abiotic stresses and hormones. Plant Cell Reports, 31, 661-669. [
DOI:10.1007/s00299-011-1183-y]
123. Rao, V. P., Sengar, R., & Singh, R. (2021). Identification of salt tolerant sugarcane cultivars through phenotypic, physiological and biochemical studies under abiotic stress. Plant Physiology Reports, 26, 256-283. [
DOI:10.1007/s40502-021-00581-5]
124. Rasheed, R., Wahid, A., Hussain, I., Mahmood, S., & Parveen, A. (2016). Partial repair of salinity-induced damage to sprouting sugarcane buds by proline and glycinebetaine pretreatment. Protoplasma, 253, 803-813. [
DOI:10.1007/s00709-015-0841-2]
125. Reyhanpour, S., Khodarahmpour, Z., & Hoveizeh, M. (2019). Study of barley varieties under salinity stress condition in early seedling growth stages via multivariate analysis. Iranian Journal of Seed Science and Research, 6(4).
126. Rodrigues, F., Da Graça, J., De Laia, M., Nhani-Jr, A., Galbiati, J., Ferro, M., . . . & Zingaretti, S. (2011). Sugarcane genes differentially expressed during water deficit. Biologia Plantarum, 55, 43-53. [
DOI:10.1007/s10535-011-0006-x]
127. Rodrigues, F. A., de Laia, M. L., & Zingaretti, S. M. (2009). Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Science, 176(2), 286-302. [
DOI:10.1016/j.plantsci.2008.11.007]
128. Rodrigues, J., Inzé, D., Nelissen, H., & Saibo, N. J. M. (2019). Source-Sink Regulation in Crops under Water Deficit. Trends in Plant Science, 24(7), 652-663.
https://doi.org/10.1016/j.tplants.2019.04.005 [
DOI:https://doi.org/10.1016/j.tplants.2019.04.005]
129. Sabino, A. R., Tavares, S. S., Riffel, A., Li, J. V., Oliveira, D. J., Feres, C. I., . . . & Sabino, A. R. (2019). 1H NMR metabolomic approach reveals chlorogenic acid as a response of sugarcane induced by exposure to Diatraea saccharalis. Industrial Crops and Products, 140, 111651. [
DOI:10.1016/j.indcrop.2019.111651]
130. Sadat, S., & Soltani Howyzeh, M. (2012). Mutation induction using ethyl methanesulfonate (EMS) in regenerated plantlets of two varieties of sugarcane CP48-103 and CP57-614. African Journal of Agricultural Research, 7, 1282-1288. [
DOI:10.5897/AJAR11.1345.]
131. Sadegh Ghol Moghadam, R., Saba, J., Shekari, F., Rousraii, M., & moradi, S. (2024). Evaluation of Relationships between Stomatal Dimensions and Density with the Root System in Bread Wheat Cultivars and Lines under Rainfed Conditions [Research]. Journal of Crop Breeding, 16(2), 1-13.
https://doi.org/10.61186/jcb.16.2.1 [
DOI:10.61186/jcb.16.2.1 [In Persian]]
132. Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., . . . & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Natural Sciences, 17(1), 34-40.
133. Sales, C. R., Marchiori, P. E. R., Machado, R. S., Fontenele, A. V., Machado, E. C., Silveira, J. A. G., & Ribeiro, R. V. (2015). Photosynthetic and antioxidant responses to drought during sugarcane ripening. Photosynthetica, 53(4), 547-554. [
DOI:10.1007/s11099-015-0146-x]
134. Sandhu, N., Yadav, S., Catolos, M., Cruz, M. T. S., & Kumar, A. (2021). Developing Climate-Resilient, Direct-Seeded, Adapted Multiple-Stress-Tolerant Rice Applying Genomics-Assisted Breeding. Frontiers in Plant Science, 12, 637488. [
DOI:10.3389/fpls.2021.637488]
135. Schaker, P. D., Peters, L. P., Cataldi, T. R., Labate, C. A., Caldana, C., & Monteiro-Vitorello, C. B. (2017). Metabolome dynamics of smutted sugarcane reveals mechanisms involved in disease progression and whip emission. Frontiers in Plant Science, 8, 882. [
DOI:10.3389/fpls.2017.00882]
136. Segal, L. M., & Wilson, R. A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genetics and Biology, 110, 1-9. [
DOI:10.1016/j.fgb.2017.12.003]
137. Sengar, R. S. R. (2020). Effect of salinity stress on morphological and yield attributes of sugarcane (Saccharum of ficinarum L.) genotypes. International Journal of Children's Spirituality, 8(5), 2312-2316. [
DOI:10.22271/chemi.2020.v8.i5af.10648]
138. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., . . . Qiu, J.-L. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686-688. [
DOI:10.1038/nbt.2650]
139. Sharma, A., Singh, R. K., Singh, P., Vaishnav, A., Guo, D.-J., Verma, K. K., . . . & Khan, N. (2021). Insights into the bacterial and nitric oxide-induced salt tolerance in sugarcane and their growth-promoting abilities. Microorganisms, 9(11), 2203. [
DOI:10.3390/microorganisms9112203]
140. Shingote, P. R., Kawar, P. G., Pagariya, M. C., Kuhikar, R. S., Thorat, A. S., & Babu, K. (2015). SoMYB18, a sugarcane MYB transcription factor improves salt and dehydration tolerance in tobacco. Acta Physiologiae Plantarum, 37, 1-12. [
DOI:10.1007/s11738-015-1961-1]
141. Shingote, P. R., Kawar, P. G., Pagariya, M. C., Rathod, P. R., & Kharte, S. B. (2017). Ectopic expression of SsMYB18, a novel MYB transcription factor from Saccharum spontaneum augments salt and cold tolerance in tobacco. Sugar Tech, 19, 270-282. [
DOI:10.1007/s12355-016-0466-6]
142. Sica, P. (2021). Sugarcane breeding for enhanced fiber and its impacts on industrial processes. IntechOpen London, UK. [
DOI:10.5772/intechopen.95884]
143. Sicilia, A., Testa, G., Santoro, D. F., Cosentino, S. L., & Lo Piero, A. R. (2019). RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress. BMC Plant Biology, 19(1), 1-24. [
DOI:10.1186/s12870-019-1964-y]
144. Silva, A. A. d., Rubio, Z. C. C., Linhares, P. C. A., Pimentel, G. V., & Marchiori, P. E. R. (2022). Genotypic variation of sugarcane for salinity tolerance: Morphological and physiological responses. Ciência e Agrotecnologia, 46. [
DOI:10.1590/1413-7054202246000122]
145. Simões, W. L., Calgaro, M., Guimarães, M. J. M., de Oliveira, A. R., & Pinheiro, M. P. M. A. (2018). Cultivo da cana-de-açúcar com deficit hídrico controlado no submédio do vale são francisco. Revista Caatinga, 31(4), 963-971. [
DOI:10.1590/1983-21252018v31n419rc]
146. Simões, W. L., Coelho, D. S., Mesquita, A. C., Calgaro, M., & da Silva, J. S. (2019). Aspectos fisiológicos e bioquímicos em variedades de cana-de-açúcar submetidas a estresse salino. Revista Caatinga, 32(4), 1069-1076. [
DOI:10.1590/1983-21252019v32n423rc]
147. Simoes, W. L., Coelho, D. S., Mesquita, A. C., Calgaro, M., & Silva, J. S. D. (2020). Physiological and biochemical responses of sugarcane varieties to salt stress. Revista Caatinga, 32, 1069-1076. [
DOI:10.1590/1983-21252019v32n423rc]
148. Simões, W. L., de Oliveira, A. R., Tardin, F. D., de Oliveira, C. P. M., de Morais, L. K., Teodoro, L. P. R., & Teodoro, P. E. (2023). Saline stress affects the growth of Saccharum complex genotypes. Journal of Agronomy and Crop Science, 209(5), 613-618. [
DOI:10.1111/jac.12647]
149. Simpson, A. J., & Perez, J. F. (1998). Latin America: ONSA, the São Paulo Virtual Genomics Institute. Nature Biotechnology, 16(9), 795-796. [
DOI:10.1038/nbt0998-795]
150. Singh, R., & Sengar, R. (2020). Effect of salinity stress on morphological and yield attributes of sugarcane (Saccharum of ficinarum L.) genotypes. International Journal of Chemical Studies, 8, 2312-2316. [
DOI:10.22271/chemi.2020.v8.i5af.10648]
151. Singh, R. K., Kota, S., & Flowers, T. J. (2021). Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theoretical and Applied Genetics, 134, 3495-3533. [
DOI:10.1007/s00122-021-03890-3]
152. So, K., Pak, U., Sun, S., Wang, Y., Yan, H., & Zhang, Y. (2022). Transcriptome profiling revealed salt stress-responsive genes in Lilium pumilum bulbs. Frontiers in Plant Science, 13, 1054064. [
DOI:10.3389/fpls.2022.1054064]
153. Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16(6), 13561-13578. [
DOI:10.3390/ijms160613561]
154. Soltani Huwyzeh, M., Arzani, A., & Mirmohammady Maibody, S. A. (2008). Evaluation of Salt Tolerance in Commercial and Promising Sugarcane Cultivars at the Beginning of Growth Using Different Stress Tolerance Indices. Seed and Plant Journal, 24(1), 145-159. [
DOI:10.22092/spij.2017.110784]
155. Soltani Huwyzeh, M., Mirmohammady Maibody, S. A., & Arzani, A. (2006). Effects of salinity on growth of eight commercial and promising sugarcane cultivars. Journal of Agricultural Sciences and Natural Resources, 13(3), 59-68.
156. Soltani Huwyzeh, M., Mirmohammady Maibody, S. A., & Arzani, A. (2009). Study of correlation between morphophysiological traits and dry weight yield of commercial and promising sugarcane cultivars at formative stage under salinity stress condition. Crop Physiology Journal, 1(2), 26-33.
157. Soltani Huwyzeh, M., Mirmohammady Maibody, S. A. M., & Arzani, A. (2008). Evaluation of Salt Tolerance of Sugarcane (Saccharum officinarum L.) Genotypes Based on the Ability to Regulate Ion Uptake and Transport at Early Stage of Growth [Research]. Journal of Crop Production and Processing, 11(42), 56-66. http://jcpp.iut.ac.ir/article-1-768-en.html
158. Srivastava, M. K., Li, C.-N., & Li, Y.-R. (2012). Development of sequence characterized amplified region (SCAR) marker for identifying drought tolerant sugarcane genotypes. Australian Journal of Crop Science, 6(4), 763-767.
159. Sugiharto, B., Ermawati, N., Mori, H., Aoki, K., Yonekura-Sakakibara, K., Yamaya, T., . . . & Sakakibara, H. (2002). Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane. Plant and Cell Physiology, 43(3), 350-354. [
DOI:10.1093/pcp/pcf039]
160. Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e Desenvolvimento Vegetal, Artmed Editora.
161. Tang, X., Mu, X., Shao, H., Wang, H., & Brestic, M. (2015). Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol, 35(4), 425-437. [
DOI:10.3109/07388551.2014.889080]
162. Tattini, M., Gucci, R., Coradeschi, M. A., Ponzio, C., & Everard, J. D. (1995). Growth, gas exchange and ion content in Olea europaea plants during salinity stress and subsequent relief. Physiologia Plantarum, 95(2), 203-210. [
DOI:10.1111/j.1399-3054.1995.tb00828.x]
163. Thalmann, M., & Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 214(3), 943-951. [
DOI:10.1111/nph.14491]
164. Thiebaut, F., Grativol, C., Carnavale-Bottino, M., Rojas, C. A., Tanurdzic, M., Farinelli, L., . . . & Ferreira, P. C. G. (2012). Computational identification and analysis of novel sugarcane microRNAs. BMC Genomics, 13, 1-14. [
DOI:10.1186/1471-2164-13-290]
165. Thirugnanasambandam, P. P., Hoang, N. V., & Henry, R. J. (2018). The challenge of analyzing the sugarcane genome. Frontiers in Plant Science, 9, 616. [
DOI:10.3389/fpls.2018.00616]
166. Trujillo, L., Sotolongo, M., Menendez, C., Ochogavia, M., Coll, Y., Hernandez, I., . . . & Hernandez, L. (2008). SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant and Cell Physiology, 49(4), 512-525. [
DOI:10.1093/pcp/pcn025]
167. Ullah, A., Manghwar, H., Shaban, M., Khan, A. H., Akbar, A., Ali, U., . . . & Fahad, S. (2018). Phytohormones enhanced drought tolerance in plants: a coping strategy. Environmental Science and Pollution Research, 25, 33103-33118. [
DOI:10.1007/s11356-018-3364-5]
168. Upadhyay, S., Singh, J., & Singh, D. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21(2), 214-222. [
DOI:10.1016/S1002-0160(11)60120-3]
169. Van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433. [
DOI:10.1146/annurev-arplant-050718-100005]
170. Vanhaverbeke, C., Heyraud, A., & Mazeau, K. (2003). Conformational analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71: impact on the interaction with soils. Biopolymers: Original Research on Biomolecules, 69(4), 480-497. [
DOI:10.1002/bip.10432]
171. Vargas, L., Santa Brigida, A. B., Mota Filho, J. P., de Carvalho, T. G., Rojas, C. A., Vaneechoutte, D., . . . & Vandepoele, K. (2014). Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PloS One, 9(12), e114744. [
DOI:10.1371/journal.pone.0114744]
172. Vasantha, S., Venkataramana, S., Gururaja Rao, P., & Gomathi, R. (2010). Long term salinity effect on growth, photosynthesis and osmotic characteristics in sugarcane. Sugar Tech, 12, 5-8. [
DOI:10.1007/s12355-010-0002-z]
173. Vaseghi, M.-J., Chibani, K., Telman, W., Liebthal, M. F., Gerken, M., Schnitzer, H., . . . & Dietz, K.-J. (2018). The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. Elife, 7, e38194. [
DOI:10.7554/eLife.38194.038]
174. Vital, C. E., Giordano, A., de Almeida Soares, E., Rhys Williams, T. C., Mesquita, R. O., Vidigal, P. M. P., . . . & de Oliveira Ramos, H. J. (2017). An integrative overview of the molecular and physiological responses of sugarcane under drought conditions. Plant Molecular Biology, 94, 577-594. [
DOI:10.1007/s11103-017-0611-y]
175. Wahid, A., & Ghazanfar, A. (2006). Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology, 163(7), 723-730. [
DOI:10.1016/j.jplph.2005.07.007]
176. Wang, D., Wang, L., Su, W., Ren, Y., You, C., Zhang, C., . . . & Su, Y. (2020). A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Scientific Reports, 10(1), 20964. [
DOI:10.1038/s41598-020-78007-9]
177. Wang, Y., Cui, Y., Liu, B., Wang, Y., Sun, S., Wang, J., . . . Zhang, Y. (2022). Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco. Frontiers in Plant Science, 13, 993841. [
DOI:10.3389/fpls.2022.993841]
178. Wang, Z.-Z., Zhang, S.-Z., Yang, B.-P., & Li, Y.-R. (2005). Trehalose synthase gene transfer mediated by Agrobacterium tumefaciens enhances resistance to osmotic stress in sugarcane. Sugar Tech, 7, 49-54. [
DOI:10.1007/BF02942417]
179. Waqas, M. A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A., & Li, Y. (2019). Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Frontiers in Plant Science, 10, 1336. [
DOI:10.3389/fpls.2019.01336]
180. Watanabe, K., Takaragawa, H., Ueno, M., & Kawamitsu, Y. (2020). Changes in agronomic and physiological traits of sugarcane grown with saline irrigation water. Agronomy, 10(5), 722. [
DOI:10.3390/agronomy10050722]
181. Willadino, L., Oliveira Filho, R. A. d., Silva Junior, E. A. d., Gouveia Neto, A., & Camara, T. R. (2011). Estresse salino em duas variedades de cana-de-açúcar: enzimas do sistema antioxidativo e fluorescência da clorofila. Revista Ciência Agronômica, 42, 417-422. [
DOI:10.1590/S1806-66902011000200022]
182. Wu, J., Zhang, J., Li, X., Xu, J., & Wang, L. (2016). Identification and characterization of a PutCu/Zn-SOD gene from Puccinellia tenuiflora (Turcz.) Scribn. et Merr. Plant Growth Regulation, 79, 55-64. [
DOI:10.1007/s10725-015-0110-6]
183. Xiao, F., & Zhou, H. (2023). Plant salt response: Perception, signaling, and tolerance. Frontiers in Plant Science, 13, 1053699. [
DOI:10.3389/fpls.2022.1053699]
184. Xu, F., He, L., Gao, S., Su, Y., Li, F., & Xu, L. (2019). Comparative analysis of two sugarcane ancestors Saccharum officinarum and S. spontaneum based on complete chloroplast genome sequences and photosynthetic ability in cold stress. International Journal of Molecular Sciences, 20(15), 3828. [
DOI:10.3390/ijms20153828]
185. Yang, Y., Fu, Z., Su, Y., Zhang, X., Li, G., Guo, J., . . . Xu, L. (2014). A cytosolic glucose-6-phosphate dehydrogenase gene, ScG6PDH, plays a positive role in response to various abiotic stresses in sugarcane. Scientific Reports, 4(1), 7090. [
DOI:10.1038/srep07090]
186. Yuwono, T., Handayani, D., & Soedarsono, J. (2005). The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Australian Journal of Agricultural Research, 56(7), 715-721. [
DOI:10.1071/AR04082]
187. Zeeshan, M., Lu, M., Sehar, S., Holford, P., & Wu, F. (2020). Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy, 10(1), 127. [
DOI:10.3390/agronomy10010127]
188. Zhang, H., Li, Z., Xu, G., Bai, G., Zhang, P., Zhai, N., . . . & Jin, L. (2022). Genome-wide identification and characterization of NPF family reveals NtNPF6. 13 involving in salt stress in Nicotiana tabacum. Frontiers in Plant Science, 13, 999403. [
DOI:10.3389/fpls.2022.999403]
189. Zhang, J., Nagai, C., Yu, Q., Pan, Y.-B., Ayala-Silva, T., Schnell, R. J., . . . & Ming, R. (2012). Genome size variation in three Saccharum species. Euphytica, 185, 511-519. [
DOI:10.1007/s10681-012-0664-6]
190. Zhang, Y., Lv, Y., Jahan, N., Chen, G., Ren, D., & Guo, L. (2018). Sensing of abiotic stress and ionic stress responses in plants. International Journal of Molecular Sciences, 19(11), 3298. [
DOI:10.3390/ijms19113298]
191. Zhao, D., & Li, Y.-R. (2015). Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy, 2015, 1-10. [
DOI:10.1155/2015/547386]
192. Zhao, D., Zhu, K., Momotaz, A., & Gao, X. (2020). Sugarcane plant growth and physiological responses to soil salinity during tillering and stalk elongation. Agriculture, 10(12), 608. [
DOI:10.3390/agriculture10120608]
193. Zulfiqar, F., Akram, N. A., & Ashraf, M. (2020). Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta, 251, 1-17. [
DOI:10.1007/s00425-019-03293-1]
194. Zuo, D.-D., Ahammed, G. J., & Guo, D.-L. (2023). Plant transcriptional memory and associated mechanism of abiotic stress tolerance. Plant Physiology and Biochemistry, 201, 107917.
https://doi.org/10.1016/j.plaphy.2023.107917 [
DOI:https://doi.org/10.1016/j.plaphy.2023.107917]