1. Abo-Hegazy, S. R. E., Selim, T., & Ashrie, A. A. M. (2013). Genotype × environment interaction and stability analysis for yield and its components in lentil. Journal of Plant Breeding and Crop Science, 5(5), 85-90. [
DOI:10.5897/JPBCS12.066]
2. Akinci, C., Bicer, B. T., Kizilgeci, F., Albayrak, Ö., & Yildirim, M. (2018). Stability parameters in lentil genotypes. El-Cezerî Journal of Science and Engineering, 5(2), 287-291. [
DOI:10.31202/ecjse.403995]
3. Barrios, A., Aparicio, T., Rodríguez, M. J., de la Vega, M. P., & Caminero, C. (2016). Winter sowing of adapted lines as a potential yield increase strategy in lentil (Lens culinaris Medik.). Spanish Journal of Agricultural Research, 14(2), e0702. [
DOI:10.5424/sjar/2016142-8092]
4. Bhattacharya, S., Das, A., Banerjee, J., Mandal, S. N., Kumar, S., & Gupta, S. (2022). Elucidating genetic variability and genotype× environment interactions for grain iron and zinc content among diverse genotypes of lentils (Lens culinaris). Plant Breeding, 141(6), 786-800. https://hdl.handle.net/20.500.11766/68227 [
DOI:10.1111/pbr.13053]
5. Ceccarelli, S. (1989). Wide adaptation: How wide? Euphytica, 40, 197-205. [
DOI:10.1007/BF00024512]
6. Dehghani, H., Sabaghpour, S. H., & Sabaghnia, N. (2008). Genotype x environment interaction for grain yield of some lentil genotypes and relationship among univariate stability statistics. Spanish Journal of Agricultural Research, (3), 385-394. [
DOI:10.5424/sjar/2008063-5292]
7. Coan, M. M. D., Marchioro, V. S., Franco, F. D. A., Pinto, R. J. B., Scapim, C. A., & Baldissera, J. N. C. (2018). Determination of genotypic stability and adaptability in wheat genotypes using mixed statistical models. Journal of Agricultural Science and Technology, 20(7), 1525-1540.
8. Fernandez, G. C. (1991). Analysis of genotype× environment interaction by stability estimates. HortScience, 26(8), 947-950. [
DOI:10.21273/HORTSCI.26.8.947]
9. Ghaffar, M., Asghar, M. J., Shahid, M., & Hussain, J. (2023). Estimation of G× E Interaction of Lentil Genotypes for yield using AMMI and GGE Biplot in Pakistan. Journal of Soil Science and Plant Nutrition, 23, 2316-2330. [
DOI:10.1007/s42729-023-01182-x]
10. Holland, J. B. (2006). Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Science, 46(2), 642-654. [
DOI:10.2135/cropsci2005.0191]
11. Jahufer, M. Z. Z., & Casler, M. D. (2015). Application of the Smith‐Hazel selection index for improving biomass yield and quality of switchgrass. Crop Science, 55(3), 1212-1222. [
DOI:10.2135/cropsci2014.08.0575]
12. Jeberson, M. S., Shashidhar, K. S., Wani, S. H., Singh, A. K., & Dar, S. A. (2019). Identification of stable lentil (Lens culinaris Medik) genotypes through GGE biplot and AMMI analysis for North Hill Zone of India. Legume Research-An International Journal, 42(4), 467-472. [
DOI:10.18805/LR-3901]
13. Karimizadeh, R., Mohammadi, M., & Sabaghmia, N. (2013). Site regression biplot analysis for matching new improved lentil genotypes into target environments. Journal of Plant Physiology and Breeding, 3(2), 51-65.
14. Kochaki, A., & Banayan aval, M. (1993). Pulse crops. Mashhad University of jihad Press. 236 pp.
15. Lin, C. S., & Binns, M. R. (1991). Genetic properties of four types of stability parameter. Theoretical and Applied Genetics, 82, 505-509. [
DOI:10.1007/BF00588606]
16. Namdari, A., Pezeshkpour, P., Mehraban, A., Naseri, A., Vaezi, B., & Nazarli, H. (2022). Evaluation the grain yield stability of promising rainfed lentil genotypes using parametric and non-parametric statistics. Iranian Journal of Field Crop Science, 53(3), 153-167 (In Persian).
17. Olivoto, T., Lúcio, A. D., da Silva, J. A., Marchioro, V. S., de Souza, V. Q., & Jost, E. (2019a). Mean performance and stability in multi‐environment trials I: combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), 2949-2960. [
DOI:10.2134/agronj2019.03.0220]
18. Olivoto, T., Lúcio, A. D., da Silva, J. A., Sari, B. G., & Diel, M. I. (2019b). Mean performance and stability in multi‐environment trials II: Selection based on multiple traits. Agronomy Journal, 111(6), 2961-2969. [
DOI:10.2134/agronj2019.03.0221]
19. Olivoto, T., & Nardino, M. (2021). MGIDI: Toward an effective multivariate selection in biological experiments. Bioinformatics, 37(10), 1383-1389. [
DOI:10.1093/bioinformatics/btaa981]
20. Pezeshkpour, P., & Karimizadeh, R. (2023). Evaluation of the mean performance and stability of chickpea genotypes by integration AMMI and BLUP models and selection based on Multi-Trait Stability Index (MTSI). Journal of Crop Breeding, 15(46), 73-83 (In Persian). [
DOI:10.61186/jcb.15.46.73]
21. Pour-Aboughadareh, A., Ghazvini, H., Barati, A., Koohkan, S., & Arazmjoo, E. (2023). Selection of promising genotypes of barley using the best linear unbiased predictor model (BLUP). Journal of Crop Breeding, 15(46), 1-10 (In Persian). [
DOI:10.61186/jcb.15.46.1]
22. de Resende, M. D. V. (2007). Matemática e estatística na análise de experimentos e no melhoramento genético. Colombo: Embrapa Florestas, 2007.
23. Rocha, J. R. D. A. S. D. C., Machado, J. C., & Carneiro, P. C. S. (2018). Multitrait index based on factor analysis and ideotype‐design: Proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 10(1), 52-60. [
DOI:10.1111/gcbb.12443]
24. Sabaghpour, S. H., Safikhni, M., Sarker, A., Ghaffri, A., & Ketata, H. (2004, June). Present status and future prospects of lentil cultivation in Iran. In Proc 5th European Conference on Grain Legumes (pp. 7-11).
25. Sabaghnia, N., Dehghani, H., & Sabaghpour, S. H. (2006). Nonparametric methods for interpreting genotype× environment interaction of lentil genotypes. Crop Science, 46(3), 1100-1106. [
DOI:10.2135/cropsci2005.06-0122]
26. Sellami, M. H., Pulvento, C., Aria, M., Stellacci, A. M., & Lavini, A. (2019). A systematic review of field trials to synthesize existing knowledge and agronomic practices on protein crops in Europe. Agronomy, 9(6), 292. [
DOI:10.3390/agronomy9060292]
27. Sellami, M. H., Pulvento, C., & Lavini, A. (2021). Selection of suitable genotypes of lentil (Lens culinaris Medik.) under rainfed conditions in south Italy using multi-trait stability index (MTSI). Agronomy, 11(9), 1807. [
DOI:10.3390/agronomy11091807]
28. Sharifi, P. 2020. Application of Multivariate Analysis Methods in Agriculural Sciences. Rasht Branch, Islamic Azad University Press, IR., 288 pp (In Persian).
29. Sharifi, P., Sheikh, F., Miri, K., Sekhavat, R., & Asteraki, H. (2022). Evaluation of seed yield stability of faba bean genotypes by linear mixed-effects models (LMM). Iranian Journal of Field Crop Science, 53(2), 97-107 (In Persian).
30. Yadav, N. K., Ghimire, S. K., Sah, B. P., Sarker, A., Shrestha, S. M., & Sah, S. K. (2016). Genotype x environment interaction and stability analysis in lentil (Lens culinaris Medik.). International Journal of Environment, Agriculture and Biotechnology, 1(3), 238539. [
DOI:10.22161/ijeab/1.3.7]
31. Yan, W., & Kang, M. S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC press. [
DOI:10.1201/9781420040371]
32. Zaccardelli, M., Sonnante, G., Lupo, F., Branca, F., & de Falco, E. (2010). Leguminose Minori (Cece, Lenticchia, Cicerchia, Fava); Consiglio per Ricerca Sperimentazione Agricoltura: Rome, Italy, 73 pp ISBN 978-88-97081-00-5.