1. Alvarado, G., López, M., Vargas, M., Pacheco, Á., Rodríguez, F., Burgueño, J., & Crossa, J. (2016). META-R (Multi Environment Trial Analysis with R for Windows) Version 6.01. hdl: 11529/10201. CIMMYT Research Data & Software Repository Network, 20, 2017.
2. Anbessa, Y., Warkentin, T., Vandenberg, A., & Bandara, M. (2006). Heritability and predicted gain from selection in components of crop duration in divergent chickpea cross populations. Euphytica, 152, 1-8. [
DOI:10.1007/s10681-006-9163-y]
3. Astereki, H., Pouresmael, M., & Sharifi, P. (2015). Genetic Variability of Yield, and Yield Components in Chickpea (Cicer arietinum L.). Thai Journal of Agricultural Science, 48(3), 115-124.
4. Berdahl, J., Mayland, H., Asay, K., & Jefferson, P. (1999). Variation in agronomic and morphological traits among Russian wildrye accessions. Crop Science, 39(6), 1890-1895. [
DOI:10.2135/cropsci1999.3961890x]
5. FAOSTAT. (2022). FAO Stat. Database. 2021. In: Food and Agriculture Organization of the United Nations Rome, Italy.
6. Gaur, P., Pande, S., Upadhyaya, H., & Rao, B. (2006). Extra-large Kabuli chickpea with high resistance to Fusarium wilt. Journal of SAT Agricultural Research, 2(1), 1-2.
7. Gediya, L. N., Patel, D. A., Kumar, S., Kumar, D., Parmar, D. J., & Patel, S. S. (2019). Phenotypic variability, path analysis and molecular diversity analysis in chickpea (Cicer arietinum L.). Vegetos, 32, 167-180. [
DOI:10.1007/s42535-019-00020-9]
8. Gowda, C., Upadhyaya, H., Dronavalli, N., & Singh, S. (2011). Identification of large‐seeded high‐yielding stable kabuli chickpea germplasm lines for use in crop improvement. Crop Science, 51(1), 198-209. [
DOI:10.2135/cropsci2010.01.0078]
9. Hartley, H. O. (1950). The maximum F-ratio as a short-cut test for heterogeneity of variance. Biometrika, 37(3/4), 308-312. [
DOI:10.2307/2332383]
10. Jakhar, D. S., Kamble, M., Singh, A., & Raj, P. (2016). Genetic variability, character association and path coefficient analysis in Chickpea (Cicer arietinum L.). Ecology, Environment and Conservation Journal, 22, 239-S244.
11. Jha, U. C. (2018). Current advances in chickpea genomics: applications and future perspectives. Plant cell reports, 37, 947-965. [
DOI:10.1007/s00299-018-2305-6]
12. Joshi, P., Yasin, M., & Sundaram, P. (2018). Genetic variability, heritability and genetic advance study for seed yield and yield component traits in a chickpea recombinant inbred line (RIL) population. International Journal of Pure & Applied Bioscience, 6(2), 136-141. [
DOI:10.18782/2320-7051.6231]
13. Kanooni, H. (2020). An overwiew of chickpea breeding in Iran. In: Dryland Agricultural Research Institute.
14. Kassambara, A. (2017). Practical guide to cluster analysis in R: Unsupervised machine learning (Vol. 1). Sthda.
15. Kassambara, A., & Mundt, F. (2017). Package 'factoextra'. Extract and visualize the results of multivariate data analyses, 76(2).
16. Krishnamurthy, L., Kashiwagi, J., Gaur, P., Upadhyaya, H., & Vadez, V. (2010). Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Research, 119(2-3), 322-330. [
DOI:10.1016/j.fcr.2010.08.002]
17. Merga, B., & Haji, J. (2019). Economic importance of chickpea: Production, value, and world trade. Cogent Food & Agriculture, 5(1), 1615718. [
DOI:10.1080/23311932.2019.1615718]
18. Noor, F., Ashaf, M., & Ghafoor, A. (2003). Path analysis and relationship among quantitative traits in chickpea (Cicer arietinum L.). Pak. J. Biol. Sci, 6(6), 551-555. [
DOI:10.3923/pjbs.2003.551.555]
19. Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6), 783-789. [
DOI:10.1111/2041-210X.13384]
20. Olivoto, T., & Nardino, M. (2020). MGIDI: A novel multi-trait index for genotype selection in plant breeding. bioRxiv, 2020.2007. 2023.217778.
21. Pacheco, A., Vargas, M., Alvarado, G., Rodríguez, F., López, M., Crossa, J., & Burgueño, J. (2016). GEA-R (Genotype× Environment Analysis whit R for Windows.) Version 4.0. In: International Maize and Wheat Improvement Center.
22. Priyadarshan, P. M. (2017). Genetics of Traits. In P. M. Priyadarshan (Ed.), Biology of Hevea Rubber (pp. 127-129). Springer International Publishing. [
DOI:10.1007/978-3-319-54506-6_8]
23. Raina, A., Khan, S., Wani, M. R., Laskar, R. A., & Mushtaq, W. (2019). Chickpea (Cicer arietinum L.) cytogenetics, genetic diversity and breeding. Advances in Plant Breeding Strategies: Legumes: Volume 7, 53-112. [
DOI:10.1007/978-3-030-23400-3_3]
24. Roorkiwal, M., Jain, A., Kale, S. M., Doddamani, D., Chitikineni, A., Thudi, M., & Varshney, R. K. (2018). Development and evaluation of high‐density Axiom® Cicer SNP Array for high‐resolution genetic mapping and breeding applications in chickpea. Plant Biotechnology Journal, 16(4), 890-901. [
DOI:10.1111/pbi.12836]
25. Sharifi, P., Astereki, H., & Pouresmael, M. (2018). Evaluation of variations in chickpea (Cicer arietinum L.) yield and yield components by multivariate technique. Annals of Agrarian Science, 16(2), 136-142. [
DOI:10.1016/j.aasci.2018.02.003]
26. Singh, M. K., Roorkiwal, M., Rathore, A., Soren, K. R., Pithia, M. S., Yasin, M., Barpete, S., Singh, S., Barmukh, R., & Das, R. R. (2022). Evaluation of Global Composite Collection Reveals Agronomically Superior Germplasm Accessions for Chickpea Improvement. Agronomy, 12(9), 2013. [
DOI:10.3390/agronomy12092013]
27. Singh, U., Gaur, P., Chaturvedi, S., Hazra, K., & Singh, G. (2019). Changing plant architecture and density can increase chickpea productivity and facilitate for mechanical harvesting. International Journal of Plant Production, 13, 193-202. [
DOI:10.1007/s42106-019-00047-7]
28. Tuba Bıçer, B., & Şakar, D. (2008). Heritability and gene effects for yield and yield components in chickpea. Hereditas, 145(5), 220-224. [
DOI:10.1111/j.1601-5223.2008.02061.x]
29. Usefi, M., Dashti, H., Bihamta, M. R., & Hosseini, S. M. (2017). Analysis of genetic diversity in agronomic traits of chickpea (Cicer arietinum L.) genotypes using multivariate methods. Iranian Journal of Field Crop Science, 48(2).
30. Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., Cannon, S., Baek, J., Rosen, B. D., & Tar'an, B. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature biotechnology, 31(3), 240-246. [
DOI:10.1038/nbt.2491]
31. Yan, W., & Frégeau‐Reid, J. (2008). Breeding line selection based on multiple traits. Crop Science, 48(2), 417-423. [
DOI:10.2135/cropsci2007.05.0254]
32. Yan, W., & Rajcan, I. (2002). Biplot analysıs and trait relations of soybean. Crop Sci, 42, 12-21. [
DOI:10.2135/cropsci2002.1100]
33. Yücel, D. Ö., Anlarsal, A. E., & Yücel, C. (2006). Genetic variability, correlation and path analysis of yield, and yield components in chickpea (Cicer arietinum L.). Turkish Journal of Agriculture and Forestry, 30(3), 183-188.
34. Zali, H., Farshadfar, E., & Sabaghpour, S. (2011). Genetic variability and interrelationships among agronomic traits in chickpea (Cicer arietinum L.) genotypes.