1. Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18. [
DOI:10.3390/agronomy7010018]
2. Amooaghaie, R. (2014). The effect of salinity on seedling growth, chlorophyll content, relative water content and membrane stability in two canola cultivars. Journal of Plant Research (Iranian Journal of Biology), 27(2), 256-268.
3. Arshi, A., Abdin, M. Z., & Iqbal, M. (2002). Growth and metabolism of senna as affected by salt stress. Biologia Plantarum, 45, 295-298. [
DOI:10.1023/A:1015117327805]
4. Ashraf, M., Rahmatullah, R., Kanwal, S., Tahir, M. A., Sarwar, A., & Ali, L. (2007). Differential salt tolerance of sugarcane genotypes. Pakistan Journal of Agricultural Sciences, 44(1), 85-89.
5. Ashraf, M., & Waheed, A. (1993). Responses of some genetically diverse lines of chick pea (Cicer arietinum L.) to salt. Plant and Soil, 154, 257-266. [
DOI:10.1007/BF00012531]
6. Ashraf, M. P. J. C., & Harris, P. J. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. [
DOI:10.1016/j.plantsci.2003.10.024]
7. FAOSTAT. (2022). Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#compare (Accessed: 23 December 2020).
8. Farhoudi, R., & Motamedi, M. (2017). Assessing Physiological Characteristics and Dry Matter of Two Mung Bean Genotypes. Journal of Agricultural Science and Sustainable Production, 27(3), 73-86.
9. Garg, N., & Singla, R. (2009). Variability in the response of chickpea cultivars to short-term salinity, in terms of water retention capacity, membrane permeability, and osmo-protection. Turkish Journal of Agriculture and Forestry, 33(1), 57-63. [
DOI:10.3906/tar-0712-41]
10. Haileselasie, T. H., & Teferii, G. (2012). The effect of salinity stress on germination of chickpea (Cicer arietinum L.) land race of Tigray. Current Research Journal of Biological Sciences, 4(5), 578-583.
11. Hoagland, D.R. & Arnon, D.I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347, 1-32.
12. Houle, G., Morel, L., Reynolds, C. E., & Siégel, J. (2001). The effect of salinity on different developmental stages of an endemic annual plant, Aster laurentianus (Asteraceae). American Journal of Botany, 88(1), 62-67. [
DOI:10.2307/2657127]
13. Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., ... & Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in Plant Science, 12, 660409. [
DOI:10.3389/fpls.2021.660409]
14. Kumawat, K. R., Gothwal, D. K., & Singh, D. (2017). Salinity tolerance of lentil genotypes based on stress tolerance indices. Journal of Pharmacognosy and Phytochemistry, 6(4), 1368-1372.
15. Li, G., Peng, X., Wei, L., & Kang, G. (2013). Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene, 529(2), 321-325. [
DOI:10.1016/j.gene.2013.07.093]
16. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. [
DOI:10.1046/j.0016-8025.2001.00808.x]
17. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. [
DOI:10.1146/annurev.arplant.59.032607.092911]
18. Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C., ... & Gilliham, M. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 30(4), 360-364. [
DOI:10.1038/nbt.2120]
19. Murillo-Amador, B., Troyo-Diéguez, E., López-Cortés, A., Jones, H. G., Ayala-Chairez, F., & Tinoco-Ojanguren, C. L. (2001). Salt tolerance of cowpea genotypes in the emergence stage. Australian Journal of Experimental Agriculture, 41(1), 81-88. [
DOI:10.1071/EA00055]
20. Muscolo, A., Junker, A., Klukas, C., Weigelt-Fischer, K., Riewe, D., & Altmann, T. (2015). Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. Journal of Experimental Botany, 66(18), 5467-5480. [
DOI:10.1093/jxb/erv208]
21. Negrão, S., Schmöckel, S. M., & Tester, M. J. A. O. B. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11. [
DOI:10.1093/aob/mcw191]
22. Puvanitha, S., & Mahendran, S. (2017). Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Scholars Journal of Agriculture and Veterinary Sciences, 4(4), 126-131.
23. Qadir, M., & Oster, J. D. (2004). Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Science of the Total Environment, 323(1-3), 1-19. [
DOI:10.1016/j.scitotenv.2003.10.012]
24. Saadeghi-Azar, L., Madah Hoseini, S., Rahimi, A., & Mohammadi Mirik, A. A. (2013). Effect of Salinity Stress on some Germination and Vegetative Growth Indices of Lentil Genotypes. Journal of Crops Improvement, 15(4), 107-117.
25. Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 407-421.
26. Singh, D., Singh, C. K., Kumari, S., Tomar, R. S. S., Karwa, S., Singh, R., ... & Pal, M. (2017). Correction: Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. Plos one, 12(12), e0190462. [
DOI:10.1371/journal.pone.0190462]
27. Tandon, H. L. S. (1995). Methods of analysis of soils, plants, water andfertilizers. FDCO, New Delhi.
28. Tepe, H. D., & Aydemir, T. (2015). Protective effects of Ca2+ against NaCl induced salt stress in two lentil (Lens culinaris) cultivars. African Journal of Agricultural Research, 10(23), 2389-2398. [
DOI:10.5897/AJAR2014.9479]
29. Zhu, M., Shabala, S., Shabala, L., Fan, Y., & Zhou, M. X. (2016). Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. Journal of Agronomy and Crop Science, 202(2), 115-124. [
DOI:10.1111/jac.12122]